Skip to main content


Log in

Colonic Polyp Detection in CT Colonography with Fuzzy Rule Based 3D Template Matching

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript


In this paper, we introduced a computer aided detection (CAD) system to facilitate colonic polyp detection in computer tomography (CT) data using cellular neural network, genetic algorithm and three dimensional (3D) template matching with fuzzy rule based tresholding. The CAD system extracts colon region from CT images using cellular neural network (CNN) having A, B and I templates that are optimized by genetic algorithm in order to improve the segmentation performance. Then, the system performs a 3D template matching within four layers with three different cell of 8 × 8, 12 × 12 and 20 × 20 to detect polyps. The CAD system is evaluated with 1043 CT colonography images from 16 patients containing 15 marked polyps. All colon regions are segmented properly. The overall sensitivity of proposed CAD system is 100% with the level of 0.53 false positives (FPs) per slice and 11.75 FPs per patient for the 8 × 8 cell template. For the 12 × 12 cell templates, detection sensitivity is 100% at 0.494 FPs per slice and 8.75 FPs per patient and for the 20 × 20 cell templates, detection sensitivity is 86.66% with the level of 0.452 FPs per slice and 6.25 FPs per patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. Chowdhury, T. A., Ghita, O., and Whelan, P. F. (2005). A statistical approach for robust polyp detection in ct colonography, engineering in medicine and biology. 27th Annual Conference; Shanghai, China.

  2. Laghi, A., Iannaccone, R., Carbone, I., Catalano, C., Giulio, E. D., Schillaci, A., and Passariello, R., Detection of colorectal lesions with virtual computed tomographic colonography. American Journal of Surgery. 183:124–131, 2002.

    Article  Google Scholar 

  3. Wang, Z., Liang, Z., Li, X., Li, L., Eremina, D., and Lu, H., An improved electronic colon cleansing method for detection of colonic polyps by virtual colonoscopy. IEEE Transactions on Biomedical Engineering. 53:1635–1646, 2006.

    Article  Google Scholar 

  4. Chowdhury, T. A., Ghita, O., and Whelan, P. F., The use of 3D surface fitting for robust polyp detection and classification in CT colonography. Computerized Medical Imaging and Graphics. 30:427–436, 2006.

    Article  Google Scholar 

  5. Kilic, N., Ucan, O. N., and Osman, O., Automatic colon segmentation using cellular neural network for the detection of colorectal polyps. IU-JEEE. 7:419–423, 2007.

    Google Scholar 

  6. Yoshida, H., and Nappi, J., Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Transactions on Medical Imaging. 20:1261–1274, 2001.

    Article  Google Scholar 

  7. Jerebko, A. K., Malley, J. D., Franaszek, M., and Summers, R. M., Support vector machines committee classification method for computer aided polyp detection in CT colonography. Academic Radiology. 12:479–486, 2005.

    Article  Google Scholar 

  8. Yao, J., Miller, M., Franaszek, M., and Summers, R. M., Colonic polyp segmentation in CT colonography-based on fuzzy clustering and deformable models. IEEE Transactions on Medical Imaging. 23:1344–1352, 2004.

    Article  Google Scholar 

  9. Summers, R. M., Beaulieu, C. F., Pusanik, L. M., Malley, J. D., Jeffrey, R. B., Glazer, I., and Napel, S., Automated polyp detector for CT colonography: feasibility study. Radiology. 216:284–290, 2000.

    Google Scholar 

  10. Vining, D. J., Hunt, G. W., Ahn, D. K., Stelts, D. R., and Hemler, P. F., Computer-assisted detection of colon polyps and masses. Radiology. 205:705, 1997.

    Google Scholar 

  11. Kiss, G., Cleynenbreugel, J., Thomeer, M., Suetens, P., and Marchal, G., Computer aided diagnosis in virtual colonography via combination of surface normal and sphere fitting method. European Radiology. 12:77–81, 2002.

    Article  Google Scholar 

  12. Paik, D. S., Beaulieu, C. F., Rubin, G. D., Acar, B., Jeffrey, R. B., Yee, J., Dey, J., and Napel, S., Surface normal overlap: A computer-aided detection algorithm with application colonic polyps and lung nodules in helical CT. IEEE Transactions on Medical Imaging. 23:661–675, 2004.

    Article  Google Scholar 

  13. Sundaram, P., Zomorodian, A., Beaulieu, C., and Napel, S., Colon polyp detection using smoothed shape operators: Preliminary results. Medical Image Analysis. 12:299–119, 2007.

    Article  Google Scholar 

  14. Chen, D., Hassouna, M. S., Farag, A. A., Falk, R. L., and Dryden, G. W., Geometric features based framework for colonic polyp detection using a new color coding scheme. Proceeding of IEEE International Conference on Image Processing (ICIP’07). 5:17–20, 2007.

    Google Scholar 

  15. Sugano, M., An introductory survey of fuzzy control. Information Sciences. 30:59–83, 1985.

    Article  Google Scholar 

  16. Lee, C. C., Fuzzy logic in control system: Fuzzy logic controller Part I and Part II. IEEE Transactions on Systems, Man and Cybernetics Part B. 2:404–435, 1990.

    Google Scholar 

  17. Nakashima, T., Nakai, G., and Ishibuchi, H., A fuzzy rule-based system for ensembling classification systems. Proceeding of the 2002 IEEE international Conference on fuzzy system. 2:1432–1437, 2002.

    Google Scholar 

  18. Johnson, C. D., and Dachman, A. H., CT colonography: the next colon screening examination? Radiology. 216:331–341, 2000.

    Google Scholar 

  19. Chua, O., and Yang, L., Cellular neural networks: Application. IEEE Transactions on Circuits and Systems. 35:1273–1290, 1988.

    Article  MathSciNet  Google Scholar 

  20. Kozek, T., Roska, T., and Chua, L. O., Genetic algorithms for CNN template learning. IEEE Transactions on Circuits and Systems. 40:392–402, 1988.

    Google Scholar 

  21. Davis, L., Handbook of genetic algorithms. Van Nostrand Reinhold, New York, 1991.

    Google Scholar 

  22. Osman, O., Ozekes, S., and Ucan, O. N., Lung nodule diagnosis using 3D template matching. Computers in Biology and Medicine. 37:1167–1172, 2007.

    Article  Google Scholar 

  23. Cheng, H. D., Chen, J. R., and Li, J., Threshold selection based on fuzzy C-partition entropy approach. Pattern Recognition. 31:857–870, 1998.

    Article  Google Scholar 

  24. Ertas, G., Gulcur, H. O., Tunacı, M., Osman, O., and Ucan, O. N., A preliminary study on computerized lesion localization in MR mammography using 3D NMITR maps, multilayer cellular neural networks and fuzzy C-partitioning. Medical Physics. 35:195, 2008.

    Article  Google Scholar 

  25. Osman, O., Ozekes, S., and Ucan, O. N., Nodule detection in a lung region that’s segmented with using genetic cellular neural networks and 3D template matching with fuzzy rule based thresholding. Korean Journal of Radiology. 9:1–9, 2008.

    Article  Google Scholar 

  26. Ertaş, G., Gülçür, H. Ö., Osman, O., Uçan, O. N., Tunacı, M., Dursun, M., and Breast, M. R., Segmentation and lesion detection with cellular neural networks and 3D template matching. Computers in Biology and Medicine. 38:116–126, 2008.

    Article  Google Scholar 

  27. Chacraborty, D., and Winter, L., Free-response methodology: alternate analysis and a new observer-performance experiment. Radiology. 174:878–881, 1990.

    Google Scholar 

Download references


This research is supported by Istanbul University, Research Fund. Project No: T-502 and YÖP-19/07122005.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Niyazi Kilic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilic, N., Ucan, O.N. & Osman, O. Colonic Polyp Detection in CT Colonography with Fuzzy Rule Based 3D Template Matching. J Med Syst 33, 9–18 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: