Skip to main content
Log in

Optimal Switching Time Control Constrained by Immiscible Two-Phase Porous Media Flow Based on the Discontinuous Galerkin Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents a gradient-based approach for solving a switching time control problem under the two-phase porous media flow within petroleum extraction. The primary goal is to find an optimal switching time strategy that will maximize the net present value over a predetermined production period. To achieve this aim, a combination of Lagrangian techniques and variational methods is used to handle the proposed optimal control system, followed by the state equations, adjoint equations and the control strategy. The fully implicit discontinuous Galerkin methods are then used to solve the state and adjoint equations in the optimal control problem. Then the optimal switching directions for adjusting the timing of the switching instants to achieve optimality are obtained. The proposed numerical schemes are finally applied to several numerical examples, which further demonstrate that our propose methods are effective and feasible for the purpose of maximizing the net present value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Batruny, P., Babadagli, T.: Effect of waterflooding history on the efficiency of fully miscible tertiary solvent injection and optimal design of water-alternating-gas process. J. Petrol. Sci. Eng. 130, 114–122 (2015)

    Article  Google Scholar 

  2. Wang, B., Liang, Y., Yuan, M., Wang, J., Zhang, H., Li, X.: Optimal design of oilfield surface pipeline networks for the cyclic water injection development method. J. Petrol. Sci. Eng. 171, 1400–1408 (2018)

    Article  Google Scholar 

  3. Hasan, A., Foss, B.: Optimal switching time control of petroleum reservoirs. J. Petrol. Sci. Eng. 131, 131–137 (2015)

    Article  Google Scholar 

  4. Conejeros, R., Lenoach, B.: Model-based optimal control of dual completion wells. J. Petrol. Sci. Eng. 42(1), 1–14 (2004)

    Article  Google Scholar 

  5. Zhang, L., Xu, C., Zhang, K., Yao, C., Yang, Y., Yao, J.: Production optimization for alternated separate-layer water injection in complex fault reservoirs. J. Petrol. Sci. Eng. 193, 107409 (2020)

    Article  Google Scholar 

  6. Khosravi, V., Mahmood, S.M., Sharifigaliuk, H., Zivar, D.: A systematic study of smart water technology in improving the reservoir recovery performance. J. Petrol. Sci. Eng. 216, 110800 (2022)

    Article  Google Scholar 

  7. Zhang, H., Liang, Y., Zhou, X., Yan, X., Qian, C., Liao, Q.: Sensitivity analysis and optimal operation control for large-scale waterflooding pipeline network of oilfield. J. Petrol. Sci. Eng. 154, 38–48 (2017)

    Article  Google Scholar 

  8. Afanasyev, A., Andreeva, A., Chernova, A.: Influence of oil field production life on optimal co2 flooding strategies: insight from the microscopic displacement efficiency. J. Petrol. Sci. Eng. 205, 108803 (2021)

    Article  Google Scholar 

  9. Mehos, G.J., Ramirez, W.F.: Use of optimal control theory to optimize carbon dioxide miscible-flooding enhanced oil recovery. J. Petrol. Sci. Eng. 2(4), 247–260 (1989)

    Article  Google Scholar 

  10. Kashkooli, S.B., Gandomkar, A., Riazi, M., Tavallali, M.S.: Coupled optimization of carbon dioxide sequestration and co2 enhanced oil recovery. J. Petrol. Sci. Eng. 208, 109257 (2022)

    Article  Google Scholar 

  11. Chen, B., Reynolds, A.C.: Optimal control of icv’s and well operating conditions for the water-alternating-gas injection process. J. Petrol. Sci. Eng. 149, 623–640 (2017)

    Article  Google Scholar 

  12. Jain, S.S., Mani, A.: A computational model for transport of immiscible scalars in two-phase flows. J. Comput. Phys. 476, 111843 (2023)

    Article  MathSciNet  Google Scholar 

  13. Sun, W.: Variable grid finite difference method for two-dimensional two-phase immiscible flow. Acta Math. Sci. 18(4), 379–386 (1998)

    Article  MathSciNet  Google Scholar 

  14. Cai, W., Wang, J., Wang, K.: Convergence analysis of crank-nicolson galerkin-galerkin fems for miscible displacement in porous media, J. Sci. Comput. 83(2) (2020)

  15. Wang, J., Si, Z., Sun, W.: A new error analysis of characteristics-mixed fems for miscible displacement in porous media. SIAM J. Numer. Anal. 52(6), 3000–3020 (2014)

    Article  MathSciNet  Google Scholar 

  16. Li, B., Wang, J., Sun, W.: The stability and convergence of fully discrete galerkin-galerkin fems for porous medium flows. Commun. Comput. Phys. 15(4), 1141–1158 (2014)

    Article  MathSciNet  Google Scholar 

  17. Yang, H., Sun, S., Li, Y., Yang, C.: A fully implicit constraint-preserving simulator for the black oil model of petroleum reservoirs. J. Comput. Phys. 396, 347–363 (2019)

    Article  MathSciNet  Google Scholar 

  18. Lee, S., Wolfsteiner, C., Tchelepi, H.: Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity. Comput. Geosci. 12, 351–366 (2008)

    Article  MathSciNet  Google Scholar 

  19. Cancès, C., Pop, I., Vohralík, M.: An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow. Math. Comput. 83(285), 153–188 (2014)

    Article  MathSciNet  Google Scholar 

  20. Amaziane, B., Jurak, M., Radišić, I.: Convergence of a finite volume scheme for immiscible compressible two-phase flow in porous media by the concept of the global pressure. J. Comput. Appl. Math. 399, 113728 (2022)

    Article  MathSciNet  Google Scholar 

  21. Joshaghani, M., Rivière, B., Sekachev, M.: Maximum-principle-satisfying discontinuous galerkin methods for incompressible two-phase immiscible flow. Comput. Methods Appl. Mech. Eng. 391, 114550 (2022)

    Article  MathSciNet  Google Scholar 

  22. Cappanera, L., Rivière, B.: Discontinuous galerkin method for solving the black-oil problem in porous media. Numer. Methods Partial Differ. Equ. 35(2), 761–789 (2019)

    Article  MathSciNet  Google Scholar 

  23. Jayasinghe, S., Darmofal, D.L., Allmaras, S.R., Dow, E., Galbraith, M.C.: Upwinding and artificial viscosity for robust discontinuous galerkin schemes of two-phase flow in mass conservation form. Comput. Geosci. 25, 191–214 (2021)

    Article  MathSciNet  Google Scholar 

  24. Vidotto, E., Helmig, R., Schneider, M., Wohlmuth, B.: Streamline method for resolving sharp fronts for complex two-phase flow in porous media. Comput. Geosci. 22, 1487–1502 (2018)

    Article  MathSciNet  Google Scholar 

  25. Schall, E., Chauchat, N.: Implicit method and slope limiter in ahmr procedure for high order discontinuous galerkin methods for compressible flows. Commun. Nonlinear Sci. Numer. Simul. 72, 371–391 (2019)

    Article  MathSciNet  Google Scholar 

  26. Zhang, K., Li, G., Reynolds, A.C., Yao, J., Zhang, L.: Optimal well placement using an adjoint gradient. J. Petrol. Sci. Eng. 73(3–4), 220–226 (2010)

    Article  Google Scholar 

  27. Zandvliet, M.: Model-based lifecycle optimization of well locations and production settings in petroleum reservoirs, Ph.D. thesis, Delft University of Technology (2008)

  28. Song, F., Xu, C., Karniadakis, G.E.: A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations. Comput. Methods Appl. Mech. Eng. 305, 376–404 (2016)

    Article  MathSciNet  Google Scholar 

  29. Gunzburger, M., Wang, J.: Error analysis of fully discrete finite element approximations to an optimal control problem governed by a time-fractional pde. SIAM J. Control. Optim. 57(1), 241–263 (2019)

    Article  MathSciNet  Google Scholar 

  30. Zhao, W., Gunzburger, M.: Stochastic collocation method for stochastic optimal boundary control of the Navier-Stokes equations. Appl. Math. Optim. 87(1), 6–28 (2023)

    Article  MathSciNet  Google Scholar 

  31. Lions, J.L.: Optimal control of systems governed by partial differential equations, Vol. 170, Springer, (1971)

  32. Teo, K.L., Goh, C., Wong, K.: A unified computational approach to optimal control problems, Ph.D. thesis, Longman Scientific and Technical, New York (1991)

  33. Mozolevski, I., Schuh, L.: Numerical simulation of two-phase immiscible incompressible flows in heterogeneous porous media with capillary barriers. J. Comput. Appl. Math. 242, 12–27 (2013)

    Article  MathSciNet  Google Scholar 

  34. Epshteyn, Y., Rivière, B.: Analysis of hp discontinuous galerkin methods for incompressible two-phase flow. J. Comput. Appl. Math. 225(2), 487–509 (2009)

    Article  MathSciNet  Google Scholar 

  35. Kuzmin, D.: A vertex-based hierarchical slope limiter for p-adaptive discontinuous galerkin methods. J. Comput. Appl. Math. 233(12), 3077–3085 (2010)

    Article  MathSciNet  Google Scholar 

  36. Kuzmin, D.: Slope limiting for discontinuous galerkin approximations with a possibly non-orthogonal taylor basis. Int. J. Numer. Meth. Fluids 71(9), 1178–1190 (2013)

    Article  MathSciNet  Google Scholar 

  37. Rivière, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation, SIAM, (2008)

Download references

Funding

Projects supported by the National Natural Science Foundation of China Grant Nos.12131014,12001325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Rui.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose, and have no Conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, D., Rui, H. & Zhao, W. Optimal Switching Time Control Constrained by Immiscible Two-Phase Porous Media Flow Based on the Discontinuous Galerkin Method. J Sci Comput 99, 72 (2024). https://doi.org/10.1007/s10915-024-02538-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02538-w

Keywords

Navigation