Skip to main content
Log in

Quantifying Measurement-Induced Disturbance to Distinguish Correlations as Classical or Quantum

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In contrast to the conventional entanglement-separability paradigm in quantum information theory, we embark on a different path by introducing a classical dichotomy. We aim to quantify a measurement’s disturbance by minimizing the difference between input and post-measurement states to distinguish either classical or quantum correlations. Theoretically, we apply a complex-valued gradient flow over Stiefel manifolds for minimization. Our focus extends beyond the practical application to encompass the well-known Łojasiewicz gradient inequality. This inequality is a fundamental tool that guarantees the global convergence of the flow from any initial starting point to the optimal solution. Numerically, we validate the effectiveness and robustness of our proposed method by performing a series of experiments in different scenarios. Experimental results suggest the capability of our approach to accurately and reliably characterize correlations as classical or quantum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Abrudan, T.E., Eriksson, J., Koivunen, V.: Steepest descent algorithms for optimization under unitary matrix constraint. IEEE Transact. Signal Process. 56(3), 1134–1147 (2008). https://doi.org/10.1109/TSP.2007.908999

    Article  MathSciNet  Google Scholar 

  2. Absil, P.A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16(2), 531–547 (2005). https://doi.org/10.1137/040605266

    Article  MathSciNet  Google Scholar 

  3. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, Princeton, NJ (2008). With a foreword by Paul Van Doorenhttps://doi.org/10.1515/9781400830244

  4. Ashino, R., Nagase, M., Vaillancourt, R.: Behind and beyond the MATLAB ODE suite. Comput. Math. Appl. 40(4–5), 491–512 (2000). https://doi.org/10.1016/S0898-1221(00)00175-9

    Article  MathSciNet  Google Scholar 

  5. Bosyk, G., Bellomo, G., Zozor, S., Portesi, M., Lamberti, P.: Unified entropic measures of quantum correlations induced by local measurements. Physica A Stat. Mech. Appl. 462, 930–939 (2016). https://doi.org/10.1016/j.physa.2016.06.131

    Article  MathSciNet  Google Scholar 

  6. Brandwood, D.H.: A complex gradient operator and its application in adaptive array theory. IEE Proc. F Commu. Radar Signal Process. 130(1), 11–16 (1983)

    Article  MathSciNet  Google Scholar 

  7. Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054–1057 (1999). https://doi.org/10.1103/PhysRevLett.83.1054

    Article  Google Scholar 

  8. Bussandri, D., Osán, T., Majtey, A., Lamberti, P.: Revisiting the behavior of quantum correlations under nondissipative decoherence by means of the correlation matrix. Physica A Stat. Mech. Appl. (2020). https://doi.org/10.1016/j.physa.2019.123647

    Article  Google Scholar 

  9. Chu, M.T., Lin, M.M.: A complex-valued gradient flow for the entangled bipartite low rank approximation. Comput. Phys. Commun 271, 108–185, 17 (2022). https://doi.org/10.1016/j.cpc.2021.108185

    Article  MathSciNet  Google Scholar 

  10. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100(5), 050–502 (2008)

    Article  Google Scholar 

  11. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MathSciNet  Google Scholar 

  12. Krantz, S.G.: Function theory of several complex variables. AMS Chelsea Publishing, Providence, RI (2001). Reprint of the 1992 edition https://doi.org/10.1090/chel/340

  13. Lloyd, S.: Quantum search without entanglement. Phys. Rev. A 61, 010301 (1999). https://doi.org/10.1103/PhysRevA.61.010301

    Article  MathSciNet  Google Scholar 

  14. Łojasiewicz, S.: Ensembles semi-analytiques. https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf (1965). IHES Notes

  15. Łojasiewicz, S.: Sur la géométrie semi- et sous- analytique. Annales de l’Institut Fourier 43(5), 1575–1595 (1993). https://doi.org/10.5802/aif.1384

    Article  MathSciNet  Google Scholar 

  16. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022–301 (2008). https://doi.org/10.1103/PhysRevA.77.022301

    Article  Google Scholar 

  17. Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69, 032–106 (2004). https://doi.org/10.1103/PhysRevA.69.032106

    Article  MathSciNet  Google Scholar 

  18. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014–2017 (2000). https://doi.org/10.1103/PhysRevLett.85.2014

    Article  Google Scholar 

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press (2010). https://doi.org/10.1017/CBO9780511976667

  20. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett 88, 017–901 (2001). https://doi.org/10.1103/PhysRevLett.88.017901

    Article  Google Scholar 

  21. Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180–402 (2002). https://doi.org/10.1103/PhysRevLett.89.180402

    Article  Google Scholar 

  22. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997). https://doi.org/10.1137/S1064827594276424

    Article  MathSciNet  Google Scholar 

  23. Shampine, L.F., Thompson, S., Kierzenka, J.A., Byrne, G.D.: Non-negative solutions of ODEs. Appl. Math. Comput 170(1), 556–569 (2005). https://doi.org/10.1016/j.amc.2004.12.011

    Article  MathSciNet  Google Scholar 

  24. Uschmajew, A.: A new convergence proof for the higher-order power method and generalizations. Pac. J. Optim. 11(2), 309–321 (2015)

    MathSciNet  Google Scholar 

  25. Wirtinger, W.: Zur formalen theorie der funktionen von mehr komplexen veränderlichen. Math. Ann. 97, 357–376 (1927). (http://eudml.org/doc/182642)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The first author received support from the National Science and Technology Council through grants 111-2115-M-006-019 and 112-2119-M-006-004. The forth author received support from the National Center for Theoretical Sciences of Taiwan and the National Science and Technology Council through grants 112-2636-M-006-002, 112-2628-M-006-009-MY4, and 112-2119-M-006-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew M. Lin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, YC., Lu, BZ., Chen, KY. et al. Quantifying Measurement-Induced Disturbance to Distinguish Correlations as Classical or Quantum. J Sci Comput 99, 4 (2024). https://doi.org/10.1007/s10915-024-02471-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02471-y

Keywords

Navigation