Skip to main content
Log in

Low-Regularity Integrator for the Davey–Stewartson II System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider the Davey–Stewartson system in the hyperbolic–elliptic case (DS-II) in two dimensional case. It is a mass-critical equation, and was proved recently by Nachman et al. (Invent Math 220(2):395–451, 2020) the global well-posedness and scattering in \(L^2\). In this paper, we give the numerical study on this model and construct a first order low-regularity integrator for the DS-II in the periodic case. It only requires the boundedness of one additional derivative of the solution to get the first order convergence. The Fast Fourier Transform is exploited to speed up the numerical implementation. By rigorous error analysis, we prove that the numerical scheme provides first order convergence in \(H^{\gamma }({\mathbb {T}}^{2})\) for rough initial data in \(H^{\gamma +1}({\mathbb {T}}^{2})\) with \(\gamma > 1\). The optimality of the convergence is conformed by numerical experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Davey, A., Stewartson, K.: One three-dimensional packets of water waves. Proc. R. Soc. Lond. A 338, 101–110 (1974)

    Google Scholar 

  2. Djordjević, V.D., Redekopp, L.G.: On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 79(4), 703–714 (1977)

    MathSciNet  Google Scholar 

  3. Ablowitz, M.J., Segur, H.: On the evolution of packets of water waves. J. Fluid Mech. 92(4), 691–715 (1979)

    MathSciNet  Google Scholar 

  4. Newell, A., Moloney, J.V.: Nonlinear Optics. Addison-Wesley, Redwood (1992)

    Google Scholar 

  5. Leblond, H.: Bidimensional optical solitons in a quadratic medium. J. Phys. A 31(22), 5129–5143 (1998)

    MathSciNet  Google Scholar 

  6. Leblond, H.: Electromagnetic waves in ferromagnets. J. Phys. A. 32, 7907–7932 (1999)

    MathSciNet  Google Scholar 

  7. Musher, S.L., Rubenchik, A.M., Zakharov, V.E.: Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Rep. 129, 285–366 (1985)

    MathSciNet  Google Scholar 

  8. Ghidaglia, J., Saut, J.C.: On the initial value problem for the Davey–Stewartson system. Nonlinearity 3, 475–506 (1990)

    MathSciNet  Google Scholar 

  9. Gan, Z., Zhang, J.: Sharp threshold of global existence and instability of standing wave for a Davey–Stewartson system. Commun. Math. Phys. 283, 93–125 (2008)

    MathSciNet  Google Scholar 

  10. Wang, B., Guo, B.: On the initial value problem and scattering of solutions for the generalized Davey–Stewartson systems. Sci. China 8(44), 994–1002 (2001)

    MathSciNet  Google Scholar 

  11. Lu, J., Wu, Y.: Sharp threshold for scattering of a generalized Davey–Stewartson system in three dimension. Commun. Pure Appl. Anal. 14, 1641–1670 (2015)

    MathSciNet  Google Scholar 

  12. Linares, F., Ponce, G.: On the Davey–Stewartson systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 10, 523–548 (1993)

    MathSciNet  Google Scholar 

  13. Tsutsumi, M.: Decay of weak solutions to the Davey–Stewartson systems. J. Math. Anal. Appl. 182, 680–704 (1994)

    MathSciNet  Google Scholar 

  14. Hayashi, N., Saut, J.C.: Global existence of small solutions to the Davey–Stewartson and the Ishimori systems. Differ. Integral Equ. 8(7), 1657–1675 (1995)

    MathSciNet  Google Scholar 

  15. Ozawa, T.: Exact blow-up solutions to the Cauchy problem for the Davey–Stewartson systems. Proc. R. Soc. Lond. Ser. A 436(1897), 345–349 (1992)

    MathSciNet  Google Scholar 

  16. Nachman, A., Regev, I., Tataru, D.: A nonlinear Plancherel theorem with applications to global well-posedness for the defocusing Davey–Stewartson equation and to the inverse boundary value problem of Calderón. Invent. Math. 220(2), 395–451 (2020)

    MathSciNet  Google Scholar 

  17. Courtès, C., Lagoutière, F., Rousset, F.: Error estimates of finite difference schemes for the Korteweg–de Vries equation. IMA J. Numer. Anal. 40(1), 628–685 (2020)

    MathSciNet  Google Scholar 

  18. Holden, H., Koley, U., Risebro, N.H.: Convergence of a fully discrete finite difference scheme for the Korteweg–de Vries equation. IMA J. Numer. Anal. 35(3), 1047–1077 (2015)

    MathSciNet  Google Scholar 

  19. Vliegenthart, A.: On finite-difference methods for the Korteweg–de Vries equation. J. Eng. Math. 5, 137–155 (1971)

    MathSciNet  Google Scholar 

  20. Ozdes, A., Aksan, E.: Numerical solution of Korteweg–de Vries equation by Galerkin B-spline finite element method. Appl. Math. Comput. 175(2), 1256–1265 (2006)

    MathSciNet  Google Scholar 

  21. Dutta, R., Koley, U., Risebro, N.H.: Convergence of a higher order scheme for the Korteweg–de Vries equation. SIAM J. Numer. Anal. 53(4), 1963–1983 (2015)

    MathSciNet  Google Scholar 

  22. Winther, R.: A conservative finite element method for the Korteweg–de Vries equation. Math. Comput. 34(149), 23–43 (1980)

    Google Scholar 

  23. Holden, H., Lubich, C., Risebro, N.: Operator splitting for partial differential equations with Burgers nonlinearity. Math. Comput. 82(281), 173–185 (2013)

    MathSciNet  Google Scholar 

  24. Holden, H., Karlsen, K.H., Risebro, N.H.: Operator splitting methods for generalized Korteweg–de Vries equations. J. Comput. Phys. 153(1), 203–222 (1999)

    MathSciNet  Google Scholar 

  25. Guo, B., Shen, J.: On spectral approximations using modified Legendre rational functions: application to the Korteweg–de Vries equation on the half line. Indiana Univ. Math. J. 50(Special Issue), 181–204 (2001)

    MathSciNet  Google Scholar 

  26. Ma, H., Sun, W.: Optimal error estimates of the Legendre–Petrov–Galerkin method for the Korteweg–de Vries equation. SIAM J. Numer. Anal. 39(4), 1380–1394 (2001)

    MathSciNet  Google Scholar 

  27. Maday, Y., Quarteroni, A.: Error analysis for spectral approximation of the Korteweg–de Vries equation. RAIRO Modél. Math. Anal. Numér. 22(3), 499–529 (1988)

    MathSciNet  Google Scholar 

  28. Liu, H., Yan, J.: A local discontinuous Galerkin method for the Korteweg–de Vries equation with boundary effect. J. Comput. Phys. 215(1), 197–218 (2006)

    MathSciNet  Google Scholar 

  29. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40(2), 769–791 (2002)

    MathSciNet  Google Scholar 

  30. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    MathSciNet  Google Scholar 

  31. Hofmanová, M., Schratz, K.: An exponential-type integrator for the KdV equation. Numer. Math. 136, 1117–1137 (2017)

    MathSciNet  Google Scholar 

  32. Li, B., Wu, Y.: A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation. Numer. Math. 149, 151–183 (2021)

    MathSciNet  Google Scholar 

  33. Cao, J., Li, B., Lin, Y.: A new second-order low-regularity integrator for the cubic nonlinear Schrödinger equation. IMA J. Numer. Anal. (2023). https://doi.org/10.1093/imanum/drad017

    Article  Google Scholar 

  34. Bai, G., Li, B., Wu, Y.: A constructive low-regularity integrator for the 1d cubic nonlinear Schrödinger equation under the Neumann boundary condition. IMA J. Numer. Anal. (2022). https://doi.org/10.1093/imanum/drac075

    Article  Google Scholar 

  35. Li, B., Wu, Y., Zhao, X.: Gauge-transformed exponential integrator for generalized KdV equations with rough data. SIAM J. Numer. Anal. 61(4), 1689–1715 (2023)

    MathSciNet  Google Scholar 

  36. Ning, C., Wu, Y., Zhao, Xiaofei: An embedded exponential-type low-regularity integrator for mKdV equation. SIAM J. Numer. Anal. 60(3), 999–1025 (2022)

    MathSciNet  Google Scholar 

  37. Wu, Y., Zhao, X.: Optimal convergence of a second order low-regularity integrator for the KdV equation. IMA J. Numer. Anal. 42(4), 3499–3528 (2021)

    MathSciNet  Google Scholar 

  38. Wu, Y., Zhao, X.: Embedded exponential-type low-regularity integrators for KdV equation under rough data. BIT Numer. Math. 62, 1049–1090 (2022)

    MathSciNet  Google Scholar 

  39. White, P., Weideman, J.: Numerical simulation of solitons and dromions in the Davey–Stewartson system. Math. Comput. Simul. 37, 469–479 (1994)

    MathSciNet  Google Scholar 

  40. White, P.W.: The Davey–Stewartson equations: a numerical study. Thesis (Ph.D.). Oregon State University, UK (1994)

  41. Besse, C., Mauser, N.J., Stimming, H.P.: Numerical study of the Davey–Stewartson system. Math. Model. Numer. Anal. 38, 1035–1054 (2004)

    MathSciNet  Google Scholar 

  42. Klein, C., Stoilov, N.: Numerical scattering for the defocusing Davey–Stewartson II equation for initial data with compact support. Nonlinearity 32, 4258–4280 (2019)

    MathSciNet  Google Scholar 

  43. Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77(264), 2141–2153 (2008)

    Google Scholar 

  44. Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18, 731–755 (2018)

    MathSciNet  Google Scholar 

  45. Wu, Y., Yao, F.: A first-order Fourier integrator for the nonlinear Schrödinger equation on \({\mathbb{T} }\) without loss of regularity. Math. Comput. 91(335), 1213–1235 (2022)

    Google Scholar 

  46. Ostermann, A., Yao, F., Wu, Y.: A second order low-regularity integrator for the nonlinear Schrödinger equation. Adv. Contin. Discrete Models 2022, 1–14 (2022)

    Google Scholar 

  47. Ning, C., Wang, Y.: Low-regularity integrator for the Davey–Stewartson system: elliptic–elliptic case. Comput. Methods Appl. Math. Comput. Methods Appl. Math. 22(3), 675–684 (2022)

    MathSciNet  Google Scholar 

Download references

Funding

C. Ning is partially supported by NSFC 11901120 and Science and Technology Program of Guangzhou, China: 2024A04J4027. X. Kou is partially supported by NSFC 12171356.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaohong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. Ning is partially supported by NSFC 11901120. X. Kou is partially supported by NSFC 12171356.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, C., Kou, X. & Wang, Y. Low-Regularity Integrator for the Davey–Stewartson II System. J Sci Comput 99, 10 (2024). https://doi.org/10.1007/s10915-024-02467-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02467-8

Keywords

Navigation