Skip to main content
Log in

Entropy Stable Flux Correction for Hydrostatic Reconstruction Scheme for Shallow Water Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

First-order hydrostatic reconstruction (HR) schemes for shallow water equations are highly diffusive whereas high-order schemes can produce entropy-violating solutions. Our goal is to develop a flux correction with maximum antidiffusive fluxes to obtain entropy solutions of shallow water equations with variable bottom topography. For this purpose, we consider a hybrid explicit HR scheme whose flux is a convex combination of first-order Rusanov flux and high-order flux. The conditions under which the explicit first-order HR scheme for shallow water equations satisfies the fully discrete entropy inequality have been studied. The flux limiters for the hybrid scheme are calculated from a corresponding optimization problem. Constraints for the optimization problem consist of inequalities that are valid for the first-order HR scheme and applied to the hybrid scheme. We apply the discrete cell entropy inequality with the proper numerical entropy flux to single out a physically relevant solution to the shallow water equations. A nontrivial approximate solution of the optimization problem yields expressions to compute the required flux limiters. Numerical results of testing various HR schemes on different benchmarks are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004). https://doi.org/10.1137/S1064827503431090

    Article  MathSciNet  Google Scholar 

  2. Audusse, E., Bouchut, F., Bristeau, M.-O., Sainte-Marie, J.: Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint–Venant system. Math. Comput. 85(302), 2815–2837 (2016). https://doi.org/10.1090/mcom/3099

    Article  MathSciNet  Google Scholar 

  3. Berthon, C., Duran, A., Foucher, F., Saleh, K., de Dieu, Zabsonré J.: Improvement of the hydrostatic reconstruction scheme to get fully discrete entropy inequalities. J. Sci. Comput. 80, 924–956 (2019). https://doi.org/10.1007/s10915-019-00961-y

    Article  MathSciNet  Google Scholar 

  4. Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, A fluid transport algorithm that works. J. Comput. Phys. 11(1), 38–69 (1973). https://doi.org/10.1016/0021-9991(73)90147-2

    Article  Google Scholar 

  5. Buttinger-Kreuzhuber, A., Horváth, Z., Noelle, S., Blöschl, G., Waser, J.: A fast second-order shallow water scheme on two-dimensional structured grids over abrupt topography. Adv. Water Resour. 127, 89–108 (2019). https://doi.org/10.1016/j.advwatres.2019.03.010

    Article  Google Scholar 

  6. Chen, G., Noelle, S.: A new hydrostatic reconstruction scheme based on subcell reconstructions. SIAM J. Numer. Anal. 55(2), 758–784 (2017). https://doi.org/10.1137/15M1053074

    Article  MathSciNet  Google Scholar 

  7. Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017). https://doi.org/10.1016/j.jcp.2017.05.025

    Article  MathSciNet  Google Scholar 

  8. Delestre, O., Cordier, S., Darboux, F., James, F.: A limitation of the hydrostatic reconstruction technique for Shallow Water equations. C.R. Math. 350(13–14), 677–681 (2012). https://doi.org/10.1016/j.crma.2012.08.004

    Article  MathSciNet  Google Scholar 

  9. Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguerre, C., Vo, T.-N.-T., James, F., Cordier, S.: SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies. Int. J. Numer. Meth. Fluids 72(3), 269–300 (2013). https://doi.org/10.1002/fld.3741

    Article  MathSciNet  Google Scholar 

  10. Fjordholm, U., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012). https://doi.org/10.1137/110836961

    Article  MathSciNet  Google Scholar 

  11. Han, E., Warnecke, G.: Exact Riemann solutions to shallow water equations. Q. Appl. Math. 72(3), 407–453 (2014). https://doi.org/10.1090/S0033-569X-2014-01353-3

    Article  MathSciNet  Google Scholar 

  12. Harten, A., Hyman, J.M., Lax, P.D., Keyfitz, B.: On finite-difference approximations and entropy conditions for shocks. Commun. Pure Appl. Math. 29(3), 297–322 (1976). https://doi.org/10.1002/cpa.3160290305

    Article  MathSciNet  Google Scholar 

  13. Hiltebrand, A., Mishra, S.: Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126(1), 103–151 (2014). https://doi.org/10.1007/s00211-013-0558-0

    Article  MathSciNet  Google Scholar 

  14. Kivva, S., Zheleznyak, M., Pylypenko, O., Yoschenko, V.: Open Water Flow in a Wet/Dry Multiply-Connected Channel Network: A Robust Numerical Modeling Algorithm. Pure Appl. Geophys. 177, 3421–3458 (2020). https://doi.org/10.1007/s00024-020-02416-0

    Article  Google Scholar 

  15. Kivva, S.: Flux-corrected transport for scalar hyperbolic conservation laws and convection-diffusion equations by using linear programming. J. Comput. Phys. 425, 109874 (2021). https://doi.org/10.1016/j.jcp.2020.109874

    Article  MathSciNet  Google Scholar 

  16. Kivva, S.: Entropy stable flux correction for scalar hyperbolic conservation laws. J. Sci. Comput. 91, 10 (2022). https://doi.org/10.1007/s10915-022-01792-0

    Article  MathSciNet  Google Scholar 

  17. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint–Venant system. ESAIM Math. Model. Numer. Anal. 36(3), 397–425 (2002). https://doi.org/10.1051/m2an:2002019

    Article  MathSciNet  Google Scholar 

  18. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5(1), 133–160 (2007). https://doi.org/10.4310/CMS.2007.v5.n1.a6

    Article  MathSciNet  Google Scholar 

  19. Kuzmin, D.: Explicit and implicit FEM-FCT algorithms with flux linearization. J. Comput. Phys. 228(7), 2517–2534 (2009). https://doi.org/10.1016/j.jcp.2008.12.011

    Article  MathSciNet  Google Scholar 

  20. Kuzmin, D., Moller, M., Turek, S.: High-resolution FEM-FCT schemes for multidimensional conservation laws. Comput. Meth. Appl. Mech. Eng. 193(45–47), 4915–4946 (2004). https://doi.org/10.1016/j.cma.2004.05.009

    Article  MathSciNet  Google Scholar 

  21. Lax, P.: Hyperbolic systems of conservation laws and mathematical theory of shock waves. In : Vol.11 of SIAM Regional Conference Series in Applied Mathematics (1972)

  22. Lefloch, P., Mercier, J.-M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002). https://doi.org/10.1137/S003614290240069X

    Article  MathSciNet  Google Scholar 

  23. Merriam, M.L.: An entropy-based approach to nonlinear stability. NASA-TM-101086, Ames Research Center, Moffett Field, California (1989)

  24. Minatti, L., Faggioli, L.: The exact Riemann Solver to the Shallow Water equations for natural channels with bottom steps. Comput. Fluids 254, 105789 (2023). https://doi.org/10.1016/j.compfluid.2023.105789

    Article  MathSciNet  Google Scholar 

  25. Morales de Luna, T., Castro Díaz, M.J., Parés, C.: Reliability of first order numerical schemes for solving shallow water system over abrupt topography. Appl. Math. Comput. 219, 9012–9032 (2013). https://doi.org/10.1016/j.amc.2013.03.033

    Article  MathSciNet  Google Scholar 

  26. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    Google Scholar 

  27. Osher, S.: Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21(2), 217–235 (1984). https://doi.org/10.1137/0721016

    Article  MathSciNet  Google Scholar 

  28. Rusanov, V.: The calculation of the interaction of non-stationary shock waves and obstacles. USSR Comput. Math. Math. Phys. 1(2), 304–320 (1962). https://doi.org/10.1016/0041-5553(62)90062-9

    Article  Google Scholar 

  29. Sonar, T.: Entropy production in second-order three-point schemes. Numer. Math. 62, 371–390 (1992). https://doi.org/10.1007/BF01396235

    Article  MathSciNet  Google Scholar 

  30. Stoker, J.J.: Water Waves: The Mathematical Theory with Applications. John Wiley & Sons, Inc, Hoboken (1992). https://doi.org/10.1002/9781118033159

    Book  Google Scholar 

  31. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer 12, 451–512 (2003). https://doi.org/10.1017/S0962492902000156

    Article  MathSciNet  Google Scholar 

  32. Toro, E.F.: Shock-Capturing Methods for Free-Surface Shallow Flows. John Wiley & Sons, Inc, Hoboken (2001)

    Google Scholar 

  33. Zakerzadeh, H., Fjordholm, U.: High-order accurate, fully discrete entropy stable schemes for scalar conservation laws. IMA J. Numer. Anal. 36(2), 633–654 (2016). https://doi.org/10.1093/imanum/drv020

    Article  MathSciNet  Google Scholar 

  34. Zalesak, S.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335–362 (1979). https://doi.org/10.1016/0021-9991(79)90051-2

    Article  MathSciNet  Google Scholar 

  35. Zalesak, S.T.: The design of flux-corrected transport (FCT) algorithms for structured grids. In : Flux-Corrected Transport. Principles, Algorithms, and Applications, pp. 29–78. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/3-540-27206-2_2

  36. Zhao, N., Wu, H.M.: MUSCL type schemes and discrete entropy conditions. J. Comput. Math. 15(1), 72–80 (1997)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to anonymous reviewers for their comments and suggestions that helped to improve the paper.

Funding

This work was supported by the National Academy of Sciences of Ukraine, project No. 0119U001433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergii Kivva.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kivva, S. Entropy Stable Flux Correction for Hydrostatic Reconstruction Scheme for Shallow Water Flows. J Sci Comput 99, 1 (2024). https://doi.org/10.1007/s10915-024-02457-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02457-w

Keywords

Mathematics Subject Classification

Navigation