Skip to main content
Log in

Convergence of Dirichlet Energy Minimization for Spherical Conformal Parameterizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we first derive a theoretical basis for spherical conformal parameterizations between a simply connected closed surface \(\mathcal {S}\) and a unit sphere \(\mathbb {S}^2\) by minimizing the Dirichlet energy on \(\overline{\mathbb {C}}\) with stereographic projection. The Dirichlet energy can be rewritten as the sum of the energies associated with the southern and northern hemispheres and can be decreased under an equivalence relation by alternatingly solving the corresponding Laplacian equations. Based on this theoretical foundation, we develop a modified Dirichlet energy minimization with nonequivalence deflation for the computation of the spherical conformal parameterization between \(\mathcal {S}\) and \(\mathbb {S}^2\). In addition, under some mild conditions, we verify the asymptotically R-linear convergence of the proposed algorithm. Numerical experiments on various benchmarks confirm that the assumptions for convergence always hold and demonstrate the efficiency, reliability and robustness of the developed modified Dirichlet energy minimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data supporting this article will be made available on reasonable request or directly from the cited references.

References

  1. Ahlfors, L.V.: Conformal Invariants: Topics In Geometric Function Theory, vol. 371. AMS Chelsea Publishing, New York (2010)

    Google Scholar 

  2. Angenent, S., Haker, S., Tannenbaum, A., Kikinis, R.: On the Laplace-Beltrami operator and brain surface flattening. IEEE Trans. Med. Imaging 18(8), 700–711 (1999). https://doi.org/10.1109/42.796283

    Article  Google Scholar 

  3. Baid, U., Ghodasara, S., Bilello, M., Mohan, S., Calabrese, E., Colak, E., Farahani, K., Kalpathy-Cramer, J., Kitamura, F.C., Pati, S., Prevedello, L.M., Rudie, J.D., Sako, C., Shinohara, R.T., Bergquist, T., Chai, R., Eddy, J., Elliott, J., Reade, W., Schaffter, T., Yu, T., Zheng, J., Annotators, B., Davatzikos, C., Mongan, J., Hess, C., Cha, S., Villanueva-Meyer, J., Freymann, J.B., Kirby, J.S., Wiestler, B., Crivellaro, P., Colen, R.R., Kotrotsou, A., Marcus, D., Milchenko, M., Nazeri, A., Fathallah-Shaykh, H., Wiest, R., Jakab, A., Weber, M.A., Mahajan, A., Menze, B., Flanders, A.E., Bakas, S.: The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification (2021)

  4. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  5. Choi, P.T., Lam, K.C., Lui, L.M.: FLASH: Fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces. SIAM J. Imaging Sci. 8(1), 67–94 (2015). https://doi.org/10.1137/130950008

    Article  MathSciNet  Google Scholar 

  6. Choi, G.P.T., Leung-Liu, Y., Gu, X., Lui, L.M.: Parallelizable global conformal parameterization of simply-connected surfaces via partial welding. SIAM J. Imaging Sci. 13(3), 1049–1083 (2020). https://doi.org/10.1137/19M125337X

    Article  MathSciNet  Google Scholar 

  7. David Xianfeng Gu’s Home Page. http://www3.cs.stonybrook.edu/~gu/ (2017)

  8. GitHub - alecjacobson/common-3d-test-models: Repository containing common 3D test models in original format with original source if known and obj mesh. https://github.com/alecjacobson/common-3d-test-models (2021)

  9. Gu, X.D., Yau, S.T.: Computational Conformal Geometry, vol. 1. International Press, Somerville (2008)

    Google Scholar 

  10. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23(8), 949–958 (2004). https://doi.org/10.1109/TMI.2004.831226

    Article  Google Scholar 

  11. Hilbert, D.: Zur theorie der konformen abbildung. In: Dritter Band: Analysis Grundlagen der Mathematik Physik Verschiedenes: Nebst Einer Lebensgeschichte, pp. 73–80. Springer, Berlin (1935)

  12. Huang, W.Q., Gu, X.D., Huang, T.M., Lin, S.S., Lin, W.W., Yau, S.T.: High performance computing for spherical conformal and Riemann mappings. Geom. Imag. Comput. 1(2), 223–258 (2014). https://doi.org/10.4310/GIC.2014.v1.n2.a2

    Article  MathSciNet  Google Scholar 

  13. Human Connectome Project. https://humanconnectome.org. Accessed 4 September 2023

  14. Jost, J., Jost, J.: Riemannian Geometry and Geometric Analysis, vol. 42005. Springer, Berlin (2008)

    Google Scholar 

  15. Koebe, P.: Über die uniformisierung beliebiger analytischer kurven. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1907, 191–210 (1907)

    Google Scholar 

  16. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  17. Poincaré, H.: Sur l’uniformisation des fonctions analytiques. Acta Math. 31, 1–63 (1908)

    Article  MathSciNet  Google Scholar 

  18. Yueh, M.H., Lin, W.W., Wu, C.T., Yau, S.T.: An efficient energy minimization for conformal parameterizations. J. Sci. Comput. 73(1), 203–227 (2017). https://doi.org/10.1007/s10915-017-0414-y

    Article  MathSciNet  Google Scholar 

  19. Yueh, M.H., Li, T., Lin, W.W., Yau, S.T.: A novel algorithm for volume-preserving parameterizations of 3-manifolds. SIAM J. Imag. Sci. 12(2), 1071–1098 (2019). https://doi.org/10.1137/18M1201184

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Ministry of Science and Technology (MoST), the National Center for Theoretical Sciences, the Nanjing Center for Applied Mathematics, and the ST Yau Center in Taiwan. W.-W. Lin, T.-M. Huang, and M.-H. Yueh were partially supported by NSTC 110-2115-M-A49-004-, 110-2115-M-003-012-MY3, 109-2115-M-003-010-MY2 and 110-2115-M-003-014-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Ming Huang.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, WH., Huang, TM., Lin, WW. et al. Convergence of Dirichlet Energy Minimization for Spherical Conformal Parameterizations. J Sci Comput 98, 29 (2024). https://doi.org/10.1007/s10915-023-02424-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02424-x

Keywords

Mathematics Subject Classification

Navigation