Skip to main content
Log in

Numerical Analysis of a Convex-Splitting BDF2 Method with Variable Time-Steps for the Cahn–Hilliard Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, the convex-splitting BDF2 method with variable time-steps (proposed in Chen et al. SIAM J Numer Anal 57:495–525, 2019) is reconsidered for the Cahn–Hilliard model. We adopt the Fourier pseudo-spectral discretization in space. With the help of the discrete gradient structure of the BDF2 formula and some embedded inequalities, we prove that the scheme preserves a modified energy dissipation law under the updated time-step-ratio restriction \(0<r_{k}=\tau _{k}/\tau _{k-1}<4.864\). By utilizing the discrete orthogonal convolution kernels, some discrete convolution inequalities and some proof techniques (Lemma 4.6), we tackle the difficulty brought from the Douglas-Dupont regularization stabilized term and prove the robust \(L^{2}\) norm convergence of the scheme under the same mild time-step-ratio restriction \(0<r_{k}<4.864.\) Numerical experiments are carried out to support our theoretical analysis and a time adaptive strategy is applied to accelerate the simulation of the multi-scale characteristics of the Cahn–Hilliard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system I: interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  2. Hazewinkel, M., Kaashoek, J.F., Legnse, B.: Pattern Formation for a One Dimensional Evolution Based on Thoma River Basin Model. Springer, Dordrecht (1985)

    Google Scholar 

  3. Zaeem, M.A., Kadiri, H.E., Wang, P.T., Horstemeyer, M.F.: Investigating the effects of grain boundary energy anisotropy and second-phase particles on grain growth using a phase-field model. Comput. Mater. Sci. 50, 2488–2492 (2011)

    Article  Google Scholar 

  4. Dolcetta, I.C., Vita, S.F.: Area-preserving curve-shortning flows: from phase separation to image processing. Interfaces Free Bound. 4, 325–343 (2002)

    Article  MathSciNet  Google Scholar 

  5. Bertozzi, A.L., Esedoglu, S., Gillette, A.: Impainting of binary images using Cahn–Hilliard equation. IEEE Trans. Image Process. 16, 285–291 (2007)

    Article  MathSciNet  Google Scholar 

  6. Tang, T., Qiao, Z.H.: Efficient numerical methods for phase-field equations. Sci. Sin. Math. 50, 775–794 (2020). https://doi.org/10.1360/SSM-2020-0042

    Article  Google Scholar 

  7. Grigorieff, R.D.: Stability of multistep-methods on variable grids. Numer. Math. 42, 359–377 (1983)

    Article  MathSciNet  Google Scholar 

  8. Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT Numer. Math. 38, 644–662 (1998)

    Article  MathSciNet  Google Scholar 

  9. Emmrich, E.: Stability and error of the variable two-step BDF for semilinear parabolic problems. J. Appl. Math. Comput. 19, 33–55 (2005)

    Article  MathSciNet  Google Scholar 

  10. Liao, H.-L., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second order BDF scheme with variable steps for the Allen-Cahn equation. SIAM J. Numer. Anal. 58, 2294–2314 (2020)

    Article  MathSciNet  Google Scholar 

  11. Liao, H.-L., Zhang, Z.: Analysis of adaptive BDF2 scheme for diffusion equations. Math. Comp. 90, 1207–1226 (2020)

    Article  MathSciNet  Google Scholar 

  12. Ji, B., Liao, L.H.-L., Zhang, L.: An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 42(1), 649–679 (2022)

    Article  MathSciNet  Google Scholar 

  13. Liao, H.-L., Song, X., Tang, T., Zhou, T.: Analysis of the second order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection. Sci. China Math. 64, 887–902 (2021)

    Article  MathSciNet  Google Scholar 

  14. Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23(2), 572–602 (2018)

    Article  MathSciNet  Google Scholar 

  15. Chen, W., Wang, C., Wang, S., Wang, X., Wise, S.M.: Energy stable numerical schemes for ternary Cahn–Hilliard system. J. Sci. Comput. 84, 27 (2020)

    Article  MathSciNet  Google Scholar 

  16. Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: A second order accurate in time, energy stable finite element scheme for the Flory–Huggins–Cahn–Hilliard equation. Adv. Appl. Math. Mech. 14(6), 1477–1508 (2022)

    Article  MathSciNet  Google Scholar 

  17. Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57, 495–525 (2019)

    Article  MathSciNet  Google Scholar 

  18. Liao, H., Ji, B., Wang, L., Zhang, Z.: Mesh-robustness of an energy stable BDF2 scheme with variable steps for the Cahn–Hilliard model. J. Sci. Comput. 92, 52 (2022)

    Article  MathSciNet  Google Scholar 

  19. Wang, J., Yang, Y., Liao, H.-L.: Stability and convergence of a variable-step stabilized BDF2 stepping for the MBE model with slope selection, Communications in Mathematical Sciences, accepted (2023)

  20. Lou, F., Tang, T., Xie, H.: Parameter-free time adaptivity based on energy evolution for the Cahn–Hilliard equation. Commun. Comput. Phys. 19, 1542–1563 (2016)

    Article  MathSciNet  Google Scholar 

  21. Zhang, Z., Qiao, Z.: An adaptive time-stepping strategy for the Cahn–Hilliard equation. Commun. Comput. Phys. 11, 1261–1278 (2012)

    Article  MathSciNet  Google Scholar 

  22. Guillén-Gonzalez, F., Tierra, G.: Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models. Comput. Math. Appl. 68, 821–846 (2014)

    Article  MathSciNet  Google Scholar 

  23. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer-Verlag, Berlin Heidelberg (2011)

    Book  Google Scholar 

  24. Cheng, K., Wang, C., Wise, S.M., Yue, X.: A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn–Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 69, 1083–1114 (2016)

    Article  MathSciNet  Google Scholar 

  25. Liao, H.-L., Mclean, W., Zhang, J.: A discrete Gr\(\ddot{o}\)nwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    Article  MathSciNet  Google Scholar 

  26. Huang, J., Yang, C., Wei, Y.: Parallel energy-stable solver for a coupled Allen–Cahn and Cahn–Hilliard system. SIAM J. Sci. Comput. 42(5), C294–C312 (2020)

    Article  MathSciNet  Google Scholar 

  27. Gomez, H., Hughes, T.: Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 230, 5310–5327 (2011)

    Article  MathSciNet  Google Scholar 

  28. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Xiuling Hu is supported by the National Science Foundation of China under Grant nos. 11501262,12271467.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript. Numerical analysis and experiments were performed by XH and LC. The first draft of the manuscript was written by XH and all authors checked on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiuling Hu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Cheng, L. Numerical Analysis of a Convex-Splitting BDF2 Method with Variable Time-Steps for the Cahn–Hilliard Model. J Sci Comput 98, 18 (2024). https://doi.org/10.1007/s10915-023-02400-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02400-5

Keywords

Mathematics Subject Classification

Navigation