Skip to main content
Log in

An Asymptotic Preserving and Energy Stable Scheme for the Barotropic Euler System in the Incompressible Limit

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An asymptotic preserving and energy stable scheme for the barotropic Euler system under the low Mach number scaling is designed and analysed. A velocity shift proportional to the pressure gradient is introduced in the convective fluxes, which leads to the dissipation of mechanical energy and the entropy stability at all Mach numbers. The resolution of the semi-implicit in time and upwind finite volume in space fully-discrete scheme involves two steps: the solution of an elliptic problem for the density and an explicit evaluation for the velocity. The proposed scheme possesses several physically relevant attributes, such as the positivity of density, the entropy stability and the consistency with the weak formulation of the continuous Euler system. The AP property of the scheme, i.e. the boundedness of the mesh parameters with respect to the Mach number and its consistency with the incompressible limit system, is shown rigorously. The results of extensive case studies are presented to substantiate the robustness and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Arun, K.R., Das Gupta, A.J., Samantaray, S.: Analysis of an asymptotic preserving low Mach number accurate IMEX-RK scheme for the wave equation system. Appl. Math. Comput. 411(20), 126469 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Arun, K.R., Krishnan, M., Samantaray, S.: A unified asymptotic preserving and well-balanced scheme for the Euler system with multiscale relaxation. Comput. Fluids 233(13), 105248 (2022)

    MathSciNet  MATH  Google Scholar 

  3. Arun, K.R., Samantaray, S.: Asymptotic preserving low Mach number accurate IMEX finite volume schemes for the isentropic Euler equations. J. Sci. Comput. 82(2), 35 (2020). (32)

    MathSciNet  MATH  Google Scholar 

  4. Bermúdez, A., Busto, S., Dumbser, M., Ferrín, J.L., Saavedra, L., Vázquez-Cendón, M.E.: A staggered semi-implicit hybrid FV/FE projection method for weakly compressible flows. J. Comput. Phys. 421(31), 109743 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Bijl, H., Wesseling, P.: A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Comput. Phys. 141(2), 153–173 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Bispen, G., Arun, K.R., Lukáčová-Medvid’ová, M., Noelle, S.: IMEX large time step finite volume methods for low Froude number shallow water flows. Commun. Comput. Phys. 16(2), 307–347 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Boscarino, S., Qiu, J.-M., Russo, G., Xiong, T.: A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system. J. Comput. Phys. 392, 594–618 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Boscarino, S., Russo, G., Scandurra, L.: All Mach number second order semi-implicit scheme for the Euler equations of gas dynamics. J. Sci. Comput. 77(2), 850–884 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Busto, S., Río-Martín, L., Vázquez-Cendón, M.E., Dumbser, M.: A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes. Appl. Math. Comput. 402(29), 126117 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Busto, S., Tavelli, M., Boscheri, W., Dumbser, M.: Efficient high order accurate staggered semi-implicit discontinuous Galerkin methods for natural convection problems. Comput. Fluids 198(28), 104399 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Chalons, C., Girardin, M., Kokh, S.: An all-regime Lagrange-projection like scheme for the gas dynamics equations on unstructured meshes. Commun. Comput. Phys. 20(1), 188–233 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22, 745–762 (1968)

    MathSciNet  MATH  Google Scholar 

  13. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, pages 17–351. North-Holland, Amsterdam, (1991)

  14. Colella, P., Pao, K.: A projection method for low speed flows. J. Comput. Phys. 149(2), 245–269 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Couderc, F., Duran, A., Vila, J.-P.: An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification. J. Comput. Phys. 343, 235–270 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Degond, P., Tang, M.: All speed scheme for the low Mach number limit of the isentropic Euler equations. Commun. Comput. Phys. 10(1), 1–31 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Deimling, K.: Nonlinear functional analysis. Springer-Verlag, Berlin (1985)

    MATH  Google Scholar 

  18. Dellacherie, S.: Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229(4), 978–1016 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Dimarco, G., Loubère, R., Vignal, M.-H.: Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit. SIAM J. Sci. Comput. 39(5), A2099–A2128 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Duran, A., Vila, J.-P., Baraille, R.: Semi-implicit staggered mesh scheme for the multi-layer shallow water system. C. R. Math. Acad. Sci. Paris 355(12), 1298–1306 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Duran, A., Vila, J.-P., Baraille, R.: Energy-stable staggered schemes for the Shallow Water equations. J. Comput. Phys. 401(24), 109051 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Ern, A., Guermond, J.-L.: Theory and practice of finite elements. Applied Mathematical Sciences, vol. 159. Springer-Verlag, New York (2004)

  23. Eymard, R., Gallouët, T., Ghilani, M., Herbin, R.: Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18(4), 563–594 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Gallouët, T., Herbin, R., Latché, J.-C.: \(W^{1, q}\) stability of the Fortin operator for the MAC scheme. Calcolo 49(1), 63–71 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Gallouët, T., Herbin, R., Latché, J.-C.: On the weak consistency of finite volumes schemes for conservation laws on general meshes. SeMA J. 76(4), 581–594 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Gallouët, T., Herbin, R., Latché, J.-C.: Lax-Wendroff consistency of finite volume schemes for systems of non linear conservation laws: extension to staggered schemes. SeMA J. 79(2), 333–354 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Gallouët, T., Herbin, R., Latché, J.-C., Mallem, K.: Convergence of the marker-and-cell scheme for the incompressible Navier-Stokes equations on non-uniform grids. Found. Comput. Math. 18(1), 249–289 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Gallouët, T., Herbin, R., Maltese, D., Novotny, A.: Error estimates for a numerical approximation to the compressible barotropic Navier-Stokes equations. IMA J. Numer. Anal. 36(2), 543–592 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Gallouët, T., Maltese, D., Novotny, A.: Error estimates for the implicit MAC scheme for the compressible Navier-Stokes equations. Numer. Math. 141(2), 495–567 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Gastaldo, L., Herbin, R., Latché, J.-C., Therme, N.: A MUSCL-type segregated-explicit staggered scheme for the Euler equations. Comput. Fluids 175, 91–110 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Grenier, N., Vila, J.-P., Villedieu, P.: An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows. J. Comput. Phys. 252, 1–19 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Guermond, J.-L.: Un résultat de convergence d’ordre deux en temps pour l’approximation des équations de Navier-Stokes par une technique de projection incrémentale. M2AN Math. Model. Numer. Anal., 33(1), 169–189 (1999)

  33. Guermond, J.-L., Quartapelle, L.: Calculation of incompressible viscous flows by an unconditionally stable projection FEM. J. Comput. Phys. 132(1), 12–33 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Guillard, H., Viozat, C.: On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28(1), 63–86 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Haack, J., Jin, S., Liu, J.-G.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations. Commun. Comput. Phys. 12(4), 955–980 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Harlow, F.H., Amsden, A.A.: Numerical calculation of almost incompressible flow. J. Comput. Phys. 3(1), 80–93 (1968)

    MATH  Google Scholar 

  37. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    MathSciNet  MATH  Google Scholar 

  38. Herbin, R., Kheriji, W., Latché, J.-C.: On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations. ESAIM Math. Model. Numer. Anal. 48(6), 1807–1857 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Herbin, R., Latché, J.-C., Nasseri, Y., Therme, N.: A consistent quasi-second-order staggered scheme for the two-dimensional shallow water equations. IMA J. Numer. Anal. 43(1), 99–143 (2023)

    MathSciNet  MATH  Google Scholar 

  40. Herbin, R., Latché, J.-C., Saleh, K.: Low Mach number limit of some staggered schemes for compressible barotropic flows. Math. Comp. 90(329), 1039–1087 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Issa, R.I., Gosman, A.D., Watkins, A.P.: The computation of compressible and incompressible recirculating flows by a noniterative implicit scheme. J. Comput. Phys. 62(1), 66–82 (1986)

    MathSciNet  MATH  Google Scholar 

  42. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21(2), 441–454 (1999)

    MathSciNet  MATH  Google Scholar 

  43. Karki, K.C., Patankar, S.V.: Pressure based calculation procedure for viscous flows at all speedsin arbitrary configurations. AIAA J. 27(9), 1167–1174 (1989)

    Google Scholar 

  44. Klainerman, S., Majda, A.: Compressible and incompressible fluids. Comm. Pure Appl. Math. 35(5), 629–651 (1982)

    MathSciNet  MATH  Google Scholar 

  45. Klein, R.: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow. J. Comput. Phys. 121(2), 213–237 (1995)

    MathSciNet  MATH  Google Scholar 

  46. Kwatra, N., Su, J., Grétarsson, J.T., Fedkiw, R.: A method for avoiding the acoustic time step restriction in compressible flow. J. Comput. Phys. 228(11), 4146–4161 (2009)

    MathSciNet  MATH  Google Scholar 

  47. Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77(6), 585–627 (1998)

    MathSciNet  MATH  Google Scholar 

  48. Moguen, Y., Kousksou, T., Bruel, P., Vierendeels, J., Dick, E.: Pressure-velocity coupling allowing acoustic calculation in low Mach number flow. J. Comput. Phys. 231(16), 5522–5541 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Munz, C.-D., Roller, S., Klein, R., Geratz, K.J.: The extension of incompressible flow solvers to the weakly compressible regime. Comput. Fluids 32(2), 173–196 (2003)

    MathSciNet  MATH  Google Scholar 

  50. Nirenberg, L.: Topics in nonlinear functional analysis. In: Zehnder, E., Artino, R.A. (Eds) Chapter 6: Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, vol 6, New York; American Mathematical Society, Providence, RI, (2001). Revised reprint of the 1974 original

  51. Noelle, S., Bispen, G., Arun, K.R., Lukáčová-Medviová, M., Munz, C.-D.: A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36(6), B989–B1024 (2014)

    MathSciNet  MATH  Google Scholar 

  52. O’Regan, D., Cho, Y.J., Chen, Y.-Q.: Topological degree theory and applications. Series in Mathematical Analysis and Applications, vol. 10. Chapman & Hall/CRC, Boca Raton, FL (2006)

  53. Parisot, M., Vila, J.-P.: Centered-potential regularization for the advection upstream splitting method. SIAM J. Numer. Anal. 54(5), 3083–3104 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Park, J.H., Munz, C.-D.: Multiple pressure variables methods for fluid flow at all Mach numbers. Internat. J. Numer. Methods Fluids 49(8), 905–931 (2005)

    MathSciNet  MATH  Google Scholar 

  55. Schochet, S.: Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114(2), 476–512 (1994)

    MathSciNet  MATH  Google Scholar 

  56. Shin, D., Strikwerda, J.C.: Inf-sup conditions for finite-difference approximations of the Stokes equations. J. Aust. Math. Soc. Ser. B 39(1), 121–134 (1997)

    MathSciNet  MATH  Google Scholar 

  57. Tavelli, M., Dumbser, M.: A pressure-based semi-implicit space–time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible navier–stokes equations at all mach numbers. J. Comput. Phys. 341, 341–376 (2017)

    MathSciNet  MATH  Google Scholar 

  58. Thomann, A., Puppo, G., Klingenberg, C.: An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity. J. Comput. Phys. 420(25), 109723 (2020)

    MathSciNet  MATH  Google Scholar 

  59. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics. Springer-Verlag, Berlin, 3rd edition. A practical introduction (2009)

  60. Wall, C., Pierce, C.D., Moin, P.: A semi-implicit method for resolution of acoustic waves in low Mach number flows. J. Comput. Phys. 181(2), 545–563 (2002)

    MathSciNet  MATH  Google Scholar 

  61. Weinan, E., Shu, C.W.: A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow. J. Comput. Phys. 110(1), 39–46 (1994)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their comments and specific suggestions to improve the manuscript.

Funding

K.R.A. gratefully acknowledges Core Research Grant - CRG/2021/004078 from Science and Engineering Research Board, Department of Science & Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Arun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

K. R. A. gratefully acknowledges Core Research Grant - CRG/2021/004078 from Science and Engineering Research Board, Department of Science & Technology, Government of India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, K.R., Ghorai, R. & Kar, M. An Asymptotic Preserving and Energy Stable Scheme for the Barotropic Euler System in the Incompressible Limit. J Sci Comput 97, 73 (2023). https://doi.org/10.1007/s10915-023-02389-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02389-x

Keywords

Mathematics Subject Classification

Navigation