Skip to main content
Log in

Mass-, and Energy Preserving Schemes with Arbitrarily High Order for the Klein–Gordon–Schrödinger Equations

  • Review
  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a class of arbitrarily high-order conservative schemes for the Klein–Gordon Schrödinger equations. These schemes combine the symplectic Runge–Kutta method with the quadratic auxiliary variable approach. We first introduce an auxiliary variable that satisfies a quadratic equation to reformulate the original system into an equivalent one. This reformulated system possesses two strong quadratic invariants: energy and mass. Next, we discretize the reformulated system using symplectic Runge–Kutta methods, yielding a class of semi-discrete systems with arbitrarily high-order accuracy in time. The semi-discrete systems naturally preserve the discrete contour part of the strong invariants and the relationship of the quadratic equation. By eliminating the intermediate variable, we obtain the original energy conservation law. Then, the Fourier pseudo-spectral method is employed to obtain the fully discrete scheme that preserves the original energy and mass. We provide a fast solver to implement the proposed methods effectively. Numerical experiments demonstrate the expected accuracy and conservation of proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Akrivis, G., Li, B., Li, D.: Energy-decaying extrapolated RK-SAV methods for the Allen–Cahn and Cahn–Hilliard equations. SIAM J. Sci. Comput. 41, A3703–A3727 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao, W., Yang, L.: Efficient and accurate numerical methods for the Klein–Gordon–Schrödinger equations. J. Comput. Phys. 225, 1863–1893 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, W., Zhao, X.: A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein–Gordon–Schrödinger equations in the nonrelativistic limit regime. Numer. Math. 135, 833–873 (2007)

    Article  MATH  Google Scholar 

  4. Brugnano, L., Zhang, C., Li, D.: A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrödinger equation with wave operator. Commun. Nonlinear Sci. Numer. Simul. 55, 33–49 (2018)

    Article  MATH  Google Scholar 

  5. Benner, P., et al.: Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory. Springer International Publishing, Berlin (2015)

    Book  MATH  Google Scholar 

  6. Cai, W., Li, H., Wang, Y.: Partitioned averaged vector field methods. J. Comput. Phys. 370, 25–42 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J., Chen, F.: Convergence of a high-order compact finite difference scheme for the Klein–Gordon–Schrödinger equations. Appl. Numer. Math. 143, 133–145 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng, K., Qin, M.: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  9. Feng, X., Li, B., Ma, S.: High-order mass-and energy-preserving SAV-Gauss collocation finite element methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 59, 1566–1591 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fu, Y., Hu, D., Wang, Y.: High-order structure-preserving algorithms for the multi-dimensional fractional nonlinear Schrödinger equation based on the SAV approach. Math. Comput. Simul. 185, 238–255 (2021)

    Article  MATH  Google Scholar 

  11. Fu, Y., Xu, Z., Cai, W., Wang, Y.: An efficient energy-preserving method for the two-dimensional fractional Schrödinger equation. Appl. Numer. Math. 165, 232–247 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gong, Y., Chen, Y., Wang, C., Hong, Q.: A new class of high-order energy-preserving schemes for the Korteweg–de Vries equation based on the quadratic auxiliary variable (QAV) approach. Numer. Math. Theor. Meth. Appl. 15, 768C792 (2022)

    Google Scholar 

  13. Gong, Y., Wang, Q., Wang, Y., Cai, J.: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gu, X., Gong, Y., Cai, W., Wang, Y.: Arbitrarily High-Order Structure-Preserving Scheme for Nonlinear Klein–Gordon–Schrödinger equations. In Press

  15. Guo, S., Mei, L., Yan, W., Li, Y.: Mass-, energy-, and momentum-preserving spectral scheme for Klein–Gordon–Schr ödinger system on infinite domain). SIAM J. Sci. Comput. 45, B200–B230 (1978)

    Article  MATH  Google Scholar 

  16. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)

    MATH  Google Scholar 

  17. Hong, J., Jiang, S., Kong, L., Li, C.: Numerical comparison of five difference schemes for coupled Klein–Gordon–Schrödinger equations in quantum physics. J. Phys. A Math. Theor. 40, 9125–9135 (2007)

    Article  MATH  Google Scholar 

  18. Hong, J., Jiang, S., Li, C.: Explicit multi-symplectic methods for Klein–Gordon–Schrödinger equations. J. Comput. Phys. 228, 3517–3532 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hong, Q., Wang, Y., Wang, J.: Optimal error estimate of a linear Fourier pseudo-spectral scheme for two dimensional Klein–Gordon–Schrödinger equations. J. Math. Anal. Appl. 468, 817–838 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, C., Cai, W., Wang, Y.: A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach. J. Sci. Comput. 80, 1629–1655 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, C., Wang, Y., Gong, Y.: Arbitrarily high-order energy-preserving schemes for the Camassa–Holm equation. Appl. Numer. Math. 151, 85–97 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  23. Li, H., Wang, Y., Qin, M.: A sixth order averaged vector field method. J. Comput. Math. 34, 479–498 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, M., Huang, C., Zhao, Y.: Fast conservative numerical algorithm for the coupled fractional Klein–Gordon–Schrödinger equations. Numer. Algorithms. 84, 1081–1119 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X., Gong, Y., Zhang, L.: Linear high-order energy-preserving schemes for the nonlinear Schrödinger equation with wave operator using the scalar auxiliary variable approach. J. Sci. Comput. 88, 20 (2021)

    Article  MATH  Google Scholar 

  26. Li, X., Zhang, L.: High-order conservative energy quadratization schemes for the Klein–Gordon–Schrödinger equation. Adv. Comput. Math. (2022). https://doi.org/10.1007/s10444-022-09962-2

    Article  MATH  Google Scholar 

  27. Li, Y., Wu, X.: Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems. SIAM J. Sci. Comput. 38, A1876–A1895 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Z., Li, X.: The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing. SIAM J. Sci. Comput. 42, B630–B655 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Makhankov, V.: Dynamics of classical solitons (in non-integrable systems). Phys. Rep. 35, 1–128 (1978)

    Article  MathSciNet  Google Scholar 

  30. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56, 2895–2912 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen, J., Xu, J., Yang, J.: Efficient structure preserving schemes for the Klein–Gordon–Schrödinger equations. J. Sci. Comput. (2021). https://doi.org/10.1007/s10915-021-01649-y

    Article  Google Scholar 

  33. Wang, T., Zhao, X., Jiang, X.: Unconditional and optimal \(H^2\)-error estimates of two linear and conservative finite difference schemes for the Klein–Gordon–Schrödinger equation in high dimensions. Adv. Comput. Math. 44, 477–503 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, J., Liang, D., Chen, F.: Analysis of a conservative high-order compact finite difference scheme for the Klein–Gordon–Schrödinger equations. J. Comput. Appl. Math. 358, 84–96 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, J., Xiao, A.: Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations. Appl. Math. Comput. 350, 348–365 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Wang, Y., Li, Q., Mei, L.: A linear, symmetric and energy-conservative scheme for the space-fractional Klein–Gordon–Schrödinger equations. Appl. Math. Lett. 95, 104–113 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, X., Zhao, J., Wang, Q.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  Google Scholar 

  38. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 12171245, 11971416, 11971242), the Natural Science Foundation of Henan Province (No. 222300420280), the China Postdoctoral Science Foundation (No. 2023T160589), the Natural Science Foundation of Hunan Province (No. 2023JJ40656), and the scientific research Fund of Xuchang University (2024ZD010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Gu, X., Wang, Y. et al. Mass-, and Energy Preserving Schemes with Arbitrarily High Order for the Klein–Gordon–Schrödinger Equations. J Sci Comput 97, 75 (2023). https://doi.org/10.1007/s10915-023-02388-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02388-y

Keywords

Mathematics Subject Classification

Navigation