Skip to main content
Log in

A Modified High-Resolution Non-staggered Central Scheme with Adjustable Numerical Dissipation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we present a low numerical dissipation non-staggered central scheme for the Riemann problems in hyperbolic conservation laws and convection–diffusion equations. The main disadvantage of classical non-staggered central schemes is their relatively large numerical dissipation, which will cause numerical solutions to be excessively smooth at discontinuities and large gradients, especially when small time steps are forced by CFL numbers. The presented scheme reduces the numerical dissipation through introducing a time–space dependent parameter \(\alpha _{j+\frac{1}{2}}^n\) defined by restriction functions to control the information of previous time level in numerical solutions. The proof of Total Variation Diminishing (TVD) of the presented scheme indicates that the smaller the value of \(\alpha _{j+\frac{1}{2}}^n\) is, the narrower the CFL limitation is and the lower the dissipation of solutions is. Motivated by the indication, three restriction functions about the local propagation speed \( a\big (u_{j+\frac{1}{2}}^n\big ) \) are given, so that \( \alpha _{j+\frac{1}{2}}^n \) approaches 0 at the large gradients and 1 in the flat regions. The restriction functions ensure that the presented scheme not only achieves high accuracy, but also retains stability. For ensuring the overall second order accuracy of the presented scheme, the second-order central Runge–Kutta method is utilized for the time discretization. In addition, we supplement the TVD proof of the backward projection in non-staggered central schemes, which is not considered in Jiang et al. (SIAM J Numer Anal 35(6):2147–2168, 1998). Finally, we conclude this article with numerical examples to show the remarkable resolution of the presented scheme at shock waves, contact discontinuities and large gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data availibility

Enquiries about data availability should be directed to the authors.

References

  1. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint–Venant system. ESAIM: Math. Model. Numer. Anal. 36(3), 397–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dong, J., Li, D.F.: An effect non-staggered central scheme based on new hydrostatic reconstruction. Appl. Math. Comput. 372, 124992 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Touma, R.: Well-balanced central schemes for systems of shallow water equations with wet and dry states. Appl. Math. Model. 40(4), 2929–2945 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Karlsen, K.H., Brusdal, K., Dahle, H.K., Evje, S., Lie, K.A.: The corrected operator splitting approach applied to a nonlinear advection–diffusion problem. Comput. Methods Appl. Mech. Eng. 167(3–4), 239–260 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goodman, J., Kurganov, A., Rosenau, P.: Breakdown in burgers-type equations with saturating dissipation fluxes. Nonlinearity 12(2), 247 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jiang, G.S., Levy, D., Lin, C.T., Tadmor, E., Osher, S.: High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM J. Numer. Anal. 35(6), 2147–2168 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedrichs, K.O., Lax, P.D.: Systems of conservation equations with a convex extension. Proc. Natl. Acad. Sci. 68(8), 1686–1688 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, X.D., Tadmor, E.: Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math. 79(3), 397–425 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Levy, D., Puppo, G., Russo, G.: Central Weno schemes for hyperbolic systems of conservation laws. ESAIM: Math. Model. Numer. Anal. 33(3), 547–571 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arminjon, P., Viallon, M.C.: Généralisation du schéma de nessyahu-tadmor pour une équation hyperbolique à deux dimensions d’espace. Comptes rendus de l’Académie des sciences. Série 1, Mathématique 320(1), 85–88 (1995)

  12. Arminjon, P., Viallon, M.C., Madrane, A.: A finite volume extension of the Lax–Friedrichs and Nessyahu–Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn. 9(1), 1–22 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, G.S., Tadmor, E.: Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19(6), 1892–1917 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Touma, R.: Unstaggered central schemes with constrained transport treatment for ideal and shallow water magnetohydrodynamics. Appl. Numer. Math. 60(7), 752–766 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23(3), 707–740 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Díaz, M.J.C., Kurganov, A., de Luna, T.M.: Path-conservative central-upwind schemes for nonconservative hyperbolic systems. ESAIM: Math. Model. Numer. Anal. 53(3), 959–985 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kurganov, A., Lin, C.T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2(1), 141–163 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Bryson, S., Kurganov, A., Levy, D., Petrova, G.: Semi-discrete central-upwind schemes with reduced dissipation for Hamilton–Jacobi equations. IMA J. Numer. Anal. 25(1), 113–138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kurganov, A., Liu, Y.: New adaptive artificial viscosity method for hyperbolic systems of conservation laws. J. Comput. Phys. 231(24), 8114–8132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, Y.L., Kurganov, A., Lei, M., Liu, Y.: An adaptive artificial viscosity method for the saint-venant system. In: Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, pp. 125–141. Springer, Berlin (2013)

  23. Pareschi, L., Puppo, G., Russo, G.: Central Runge–Kutta schemes for conservation laws. SIAM J. Sci. Comput. 26(3), 979–999 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kröner, D.: Numerical Schemes for Conservation Laws. Wiley, New York (1997)

    MATH  Google Scholar 

  25. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fowler, A.C.: Glaciers and ice sheets. In: The Mathematics of Models for Climatology and Environment, pp. 301–336. Springer, New York (1997)

  29. Touma, R., Khankan, S.: Well-balanced unstaggered central schemes for one and two-dimensional shallow water equation systems. Appl. Math. Comput. 218(10), 5948–5960 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Črnjarić-Žic, N., Vuković, S., Sopta, L.: Balanced central NT schemes for the shallow water equations. In: Proceedings of the conference on Applied Mathematics and Scientific Computing, pp. 171–185. Springer, Berlin (2005)

  31. Chertock, A., Kurganov, A., Liu, Y.: Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients. Numer. Math. 127(4), 595–639 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lax, P.D., Liu, X.D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 51879194, 11971481, 11901577).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Li.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Dong, J., Li, Z. et al. A Modified High-Resolution Non-staggered Central Scheme with Adjustable Numerical Dissipation. J Sci Comput 97, 28 (2023). https://doi.org/10.1007/s10915-023-02349-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02349-5

Keywords

Navigation