Skip to main content
Log in

The Well-Posedness and Discontinuous Galerkin Approximation for the Non-Newtonian Stokes–Darcy–Forchheimer Coupling System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study the non-Newtonian Stokes–Darcy–Forchheimer system modeling the free fluid coupled with the porous medium flow with shear/velocity-dependent viscosities. The unique existence is proved by using the theory of nonlinear monotone operator and a coupled inf-sup condition. Moreover, we apply the discontinuous Galerkin (DG) method with \(P^k/P^{k-1}\)-DG element for numerical discretization and obtain the well-posedness, stability, and error estimate. For both the continuous and the discrete problem, we explore the convergence of the Picard iteration (or called Kacǎnov method). The theoretical results are confirmed by the numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Almonacid, J.A., Díaz, H.S., Gatica, G.N., Márquez, A.: A fully mixed finite element method for the coupling of the Stokes and Darcy–Forchheimer problems. IMA J. Numer. Anal. 40(2), 1454–1502 (2020). https://doi.org/10.1093/imanum/dry099

    Article  MathSciNet  MATH  Google Scholar 

  2. Amara, M., Capatina, D., Lizaik, L.: Coupling of Darcy–Forchheimer and compressible Navier–Stokes equations with heat transfer. SIAM J. Sci. Comput. 31(2), 1470–1499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier–Stokes/Darcy coupling. Numerische Mathematik 115(2), 195–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C.: Korn’s inequalities for piecewise \({H}^1\) vector fields. Math. Comput. 73(247), 1067–1087 (2003)

    Article  MATH  Google Scholar 

  5. Brezis, H.: Functional Analysis. Sobolev spaces and Partial Differential Equations. Springer, New York, NY (2011)

    MATH  Google Scholar 

  6. Caucao, S., Gatica, G.N., Oyarzúa, R., Sandoval, F.: Residual-based a posteriori error analysis for the coupling of the Navier–Stokes and Darcy–Forchheimer equations. ESAIM M2AN 55, 659–687 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caucao, S., Gatica, G.N., Sandoval, F.: A fully mixed finite element method for the coupling of the Navier–Stokes and Darcy–Forchheimer equations. Numer. Methods Partial Differ. Eq. 37, 2550–2587 (2021)

    Article  MathSciNet  Google Scholar 

  8. Chow, S.S., Carey, G.F.: Numerical approximation of generalized Newtonian fluids using Powell–Sabin–Heindl elements. I. Theoretical estimates. Int. J. Numer. Meth. Fluids 41(10), 1085–1118 (2003). https://doi.org/10.1002/fld.480

    Article  MathSciNet  MATH  Google Scholar 

  9. Cimolin, F., Discacciati, M.: Navier–Stokes/Forchheimer models for filtration through porous media. Appl. Numer. Math. 72(2), 205–224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47(2), 929–952 (2009). https://doi.org/10.1137/070708354

    Article  MathSciNet  MATH  Google Scholar 

  11. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupling nonlinear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 61(11), 1198–1222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans., L.C.: Partial differential equations, Graduate Studies in Mathematics, vol. 19. Amer. Math. Soc., Providence, RI (2010)

  13. Forchheimer, P.: Wasserbewegung durch boden. Z. Ver. Deutsh. Ing. 45, 1782–1788 (1901)

    Google Scholar 

  14. Galdi, G.P.: Mathematical Problems in Classical and Non-Newtonian Fluid Mechanics, pp. 121–273. Birkhäuser Basel, Basel (2008). https://doi.org/10.1007/978-3-7643-7806-6_3

  15. Girault, V., Raviart., P.A.: Finite Element Methods for Navier–Stokes equations: theory and algorithms. Springer-Verlag, Berlin (1986). https://doi.org/10.1007/978-3-642-61623-5

  16. Girault, V., Rivière, B.: DG approximation of Coupled Navier–Stokes and Darcy Equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47(3), 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hanspal, N.S., Waghode, A.N., Nassehi, V., Wakeman, R.J.: Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations. Transp. Porous Med. 64, 73–101 (2006)

    Article  MATH  Google Scholar 

  18. Hauswirth, S.C., Bowers, C.A., Fowler, C.P., Schultz, P.B., Hauswirth, A.D.W.T., Miller, C.T.: Modeling cross model non-Newtonian fluid flow in porous media. J. Contam. Hydrol. 235, 103708 (2020). https://doi.org/10.1016/j.jconhyd.2020.103708

    Article  Google Scholar 

  19. Hoang, T.T.P., Lee, H.: A global-in-time domain decomposition method for the coupled nonlinear Stokes and Darcy flows. J. Sci. Comput. 87, 22 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60(4), 1111–1127 (2000). https://doi.org/10.1137/S003613999833678X

    Article  MathSciNet  MATH  Google Scholar 

  21. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, R., Li, J., He, X., Chen, Z.: A stabilized finite volume element method for a coupled Stokes–Darcy problem. Appl. Numer. Math. 133, 2–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lions., P.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod (1969)

  24. Pan, H., Rui, H.: Mixed element method for two-dimensional Darcy–Forchheimer model. J. Sci. Comput. 52(3), 563–587 (2012). https://doi.org/10.1007/s10915-011-9558-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Pearson, J.R.A., Tardy, P.M.J.: Models for flow of non-Newtonian and complex fluids through porous media. J. Non-Newtonian Fluid Mech. 102, 447–473 (2002)

    Article  MATH  Google Scholar 

  26. Renardy, M.: Mathematical Analysis of Viscoelastic Flows. SIAM (2000)

  27. Rivière, B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22, 479–500 (2005). https://doi.org/10.1007/s10915-004-4147-3

    Article  MathSciNet  MATH  Google Scholar 

  28. Rivière., B.: Discontinuous Galerkin methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008). https://doi.org/10.1137/1.9780898717440

  29. Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005). https://doi.org/10.1137/S0036142903427640

    Article  MathSciNet  MATH  Google Scholar 

  30. Saffman, P.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971)

    Article  MATH  Google Scholar 

  31. Sequeira, A.: Hemorheology: non-Nsewtonian constitutive models for blood flow simulations. In: Farina, A., Mikelić, A., Rosso, F. (eds.) Non-Newtonian Fluid Mechanics and Complex Flows, Lecture Notes in Mathematics, vol. 2212, pp. 1–44. Springer (2016)

  32. Vassilev, D., Yotov, I.: Coupling Stokes–Darcy flow with transport. J. Sci. Comput. 31(5), 3661–3684 (2009). https://doi.org/10.1137/080732146

    Article  MathSciNet  MATH  Google Scholar 

  33. Wen, J., Su, J., He, Y., Chen, H.: A discontinuous Galerkin method for the coupled Stokes and Darcy problem. J. Sci. Comput. 85, 26 (2020). https://doi.org/10.1007/s10915-020-01342-6

    Article  MathSciNet  MATH  Google Scholar 

  34. Zeidler., E.: Nonlinear functional analysis and its applications II/B: Nonlinear monotone operators. Springer-Verlag (1990)

  35. Zhou, G., Kashiwabara, T., Oikawa, I., Chung, E., Shiue, M.C.: Some DG schemes for the Stokes–Darcy problem using P1/P1 element. Japan J. Indust. Appl. Math. 36, 1101–1128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou, G., Kashiwabara, T., Oikawa, I., Chung, E., Shiue, M.C.: An analysis on the penalty and Nitsche’s methods for the Stokes-Darcy system with a curved interface. Appl. Numer. Math. 165, 83–118 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyan Hu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript, and there is no financial interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was partially supported by NSFC General Projects No. 12171071,and the Natural Science Foundation of Sichuan Province (No. 2023NSFSC0055). All data generated or analysed during this study are included in this published article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Zhou, G. The Well-Posedness and Discontinuous Galerkin Approximation for the Non-Newtonian Stokes–Darcy–Forchheimer Coupling System. J Sci Comput 97, 24 (2023). https://doi.org/10.1007/s10915-023-02344-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02344-w

Keywords

Navigation