Skip to main content
Log in

Partial Newton-Correction Method for Multiple Fixed Points of Semi-linear Differential Operators by Legendre–Gauss–Lobatto Pseudospectral Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Inspired by several numerical methods for finding multiple solutions, a partial Newton-correction method (PNCM) is proposed to find multiple fixed points of semi-linear differential operators. First a new augmented singular transform is developed to form a barrier so that an algorithm search outside the subspace generated by previously found fixed points cannot pass the barrier and penetrate into the inside to reach an old fixed point. Thus a fixed point found by an algorithm must be new. Its mathematical validations are established. A flow chart of PNCM is presented. Then a more accurate Legendre–Gauss–Lobatto pseudospectral scheme is constructed and convertes a semi-linear fixed point problem into a linear partial differential equation and an algebraic equation. It greatly simplifies the computation. Finally numerical results are presented to show the effectiveness of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Agarwal, R., O’Regan, D.: A note on the existence of multiple fixed points for multivalued maps with applications. J. Differ. Equ. 160, 389–403 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allgower, E., Georg, K.: Simplicial and continuation methods for approximating fixed points and solutions to systems equations. SIAM Rev. 22, 28–85 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allgower, E., Chien, C., Georg, K.: Large sparse continuation problems. J. Comput. Appl. Math. 26, 3–21 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amann, H.: Multiple positive fixed points of asymptotically linear maps. J. Fun. Anal. 17, 174–213 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  6. Berinde, V.: Iterative Approximation of Fixed Points. Springer-Verlag, Berlin Heidelberg (2007)

    MATH  Google Scholar 

  7. Brown, R.: Fixed Point Theory and Its Applications. American Mathematical Society (1988). (ISBN 0-8218-5080-6)

    Book  Google Scholar 

  8. Chan, T., Keller, H.: Arc-length continuation and multi-grid techniques for nonlinear elliptic eigenvalue problems. SIAM J. Sci. Stat. Comp. 3, 173–194 (1982)

    Article  MATH  Google Scholar 

  9. Chan, T.: Techniques for large sparse systems arising from continuation methods. In: Proceedings of the Conference: Numerical Methods for Bifurcation Problems, ISNM series of Birkhauser Verlags, (1984)

  10. Chidume, C., Stefan, M.: Iterative methods for the computation of fixed points of demicontractive mappings. J. Comput. Appl. Math. 234, 861–882 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dennis, J., Jr., Moé, J.: Quasi-Newton methods, motivation and theory. SIAM Rev. 19, 46–89 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deuflhard, P.: Newton method for nonlinear problems: affine invariance and adaptive algorithms. Springer-Verlag, Berlin Heidelberg (2004)

    MATH  Google Scholar 

  13. Dugundji, J., Granas, A.: Fixed Point Theory. Springer-Verlag (1988)

    MATH  Google Scholar 

  14. Farrell, P., Birkisson, A., Funke, S.: Deflation techniques for finding distinct solutions of nonlinear partial differential equations. SIAM Sci. Comp. 37, A2026–A2045 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, T., Li, T., Wang, X.: Finding all isolated zeros of polynomial systems via stable volumes. J. Symb. Comput. 28, 187–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Georgiev, S.G., Zennir, K.: Multiple fixed-point theorems and applications in the theory of ODE’s, FDE’s and PDE’s. Chapman and Hall/CRC (2020)

    Google Scholar 

  17. Guo, B.: Spectral Methods and Their Applications. World Scientific Publishing Co., Singapore (1998)

    Book  MATH  Google Scholar 

  18. Huang, C.: Operation of Large Synchronous Generator (Chinese). Water Resources and Electric Power Press, Beijing (1992)

    Google Scholar 

  19. Kelly, C.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    Book  Google Scholar 

  20. Peter, D.: Lax, Functional Analysis. Wiley, New York (2002)

    Google Scholar 

  21. Li, T.: Solving polynomial systems by polyhedral homotopies. Taiwan. J. Math. 3, 251–279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Y., Zhou, J.: A minimax method for finding multiple critical points and its applications to semilinear PDEs. SIAM Sci. Comp. 23, 840–865 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Y., Zhou, J.: Convergence results of a local minimax method for finding multiple critical points. SIAM Sci. Comp. 24, 865–885 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Z., Wang, Z., Zhou, J.: A new augmented singular transform and its partial Newton-Correction method for finding more solutions. J. Sci. Comp. 71, 634–665 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Z., Zhou, J.: A new augmented singular transform and its partial Newton-correction method for finding more solutions to nonvariational quasilinear elliptic PDEs. J. Comput. Appl. Math. 376, 1–12 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nashed, M., Chen, X.: Convergence of Newton like method for singular operator equations using outer invers. Numer. Math. 66, 235–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nehari, Z.: On a class of nonlinear second-order differential equations. Trans. Am. Math. Soc. 95, 101–123 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  28. Neuberger, J., Swift, J.: Newton’s method and Morse Index for semilinear PDEs. Int. J. Bifu. Cha. 11, 801–820 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ramaiyan, V., Kumar, A., Altman, E.: Fixed point analysis of single cell IEEE 80211e WLANs: uniqueness and multistability. IEEE/ACM Trans. Ransact. Netw. 16, 1080–1093 (2008)

    Article  Google Scholar 

  30. Rheinboldt, W.: Methods for Solving Systems of Nonlinear Equations. Society for Industrial and Applied Mathematics, Philadelphia (1998)

    Book  MATH  Google Scholar 

  31. Shen, J., Tang, T., Wang, L.L.: Spectral Methods Algorithms, Analysis and Applications. Springer-Verlag, Berlin Heidelberg (2011)

    Book  MATH  Google Scholar 

  32. Shen, J., Tang, T.: Spectral and High-order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  33. Song, W.: A Dynamic Analysis Method of Coastline Based on Fixed Points Computation(Chinese). Ocean University of China, Qingdao (2004)

    Google Scholar 

  34. Sun, J., Zhang, K.: Existence of multiple fixed points for nonlinear operators and applications. Act. Math. Sin. Eng. Ser. 24, 1079–1088 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Talman, A.: Variable Dimension Fixed Point Algorithms and Triangulations. Mathematisch Centrum Amsterdam, Amsterdam (1980)

    MATH  Google Scholar 

  36. Wang, C., Zhou, J.: An orthogonal subspace minimization method for finding multiple solutions to the defocusing nonlinear Schrödinger equation with symmetry. Numer. Meth. Part. Diff. Equ. 29, 1778–1800 (2013)

    Article  MATH  Google Scholar 

  37. Yamamura, K., Fujioka, T.: Finding all solutions of nonlinear equations using the simplex method. J. Comput. Appl. Math. 152, 587–595 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yi, W., Xie, Z., Zhou, J.: An augmented singular transform and its partial Newton method for finding multiple solutions. J. Comput. Appl. Math. 286, 145–157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zeidler, E.: Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems. Springer-Verlag, New York (1990)

    Book  MATH  Google Scholar 

  40. Zhou, J.: A local min-orthogonal method for finding multiple saddle points. J. Math. Anal. Appl. 291, 66–81 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank two anonymous reviewers for their valuable comments.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Zhou.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by the NNSF of China (No. 12271366, 11871043, 12171322), the NSF of Shanghai, China (No. 21ZR1447200, 22ZR1445500) and the Science and Technology Innovation Plan of Shanghai (No. 20JC1414200).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, F. & Zhou, J. Partial Newton-Correction Method for Multiple Fixed Points of Semi-linear Differential Operators by Legendre–Gauss–Lobatto Pseudospectral Method. J Sci Comput 97, 32 (2023). https://doi.org/10.1007/s10915-023-02341-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02341-z

Keywords

Navigation