Skip to main content
Log in

Preconditioning Technique Based on Sine Transformation for Nonlocal Helmholtz Equations with Fractional Laplacian

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose two preconditioners based on the fast sine transformation for solving linear systems with ill-conditioned multilevel Toeplitz structure. These matrices are generated by discretizing the two-dimensional nonlocal Helmholtz equations with fractional Laplacian operators via the finite difference method. For complex wave numbers with nonnegative real parts, we give the spectral analysis of the preconditioned matrices. Additionally, we extend the proposed preconditioners and algorithm to address the general cases of the nonlocal Helmholtz equations that feature negative, complex with negative real parts, and variable wave numbers. Numerical experiments also indicate that the proposed preconditioners outperform the existing preconditioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No application.

References

  1. Bai, Z.Z.: Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems. Appl. Math. Comput. 109, 273–285 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Bai, Z.Z.: Motivations and realizations of Krylov subspace methods for large sparse linear systems. J. Comput. Appl. Math. 283, 71–78 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Bai, Z.Z., Lu, K.Y., Pan, J.Y.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 24, e2093 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bini, D., Capovani, M.: Spectral and computational properties of band symmetric Toeplitz matrices. Linear Algebra Appl. 52, 99–126 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Böttcher, A., Grudsky, S.M.: On the condition numbers of large semi-definite Toeplitz matrices. Linear Algebra Appl. 279, 285–301 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Springer, Cham (2016)

    MATH  Google Scholar 

  7. Chan, R.H., Yip, A.M., Ng, M.K.: The best circulant preconditioners for Hermitian Toeplitz systems. SIAM J. Numer. Anal. 38, 876–896 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Di Benedetto, F.: Preconditioning of block Toeplitz matrices by sine transforms. SIAM J. Sci. Comput. 18, 499–515 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Di Benedetto, F., Fiorentino, G., Serra, S.: CG preconditioning for Toeplitz matrices. Comput. Math. Appl. 25, 35–45 (1993)

    MathSciNet  MATH  Google Scholar 

  10. D’lia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66, 1245–1260 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Donatelli, M., Mazza, M., Serra Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Duo, S.W., van Wyk, H.W., Zhang, Y.Z.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Fang, Z.W., Ng, M.K., Sun, H.W.: Circulant preconditioners for a kind of spatial fractional diffusion equations. Numer. Algorithms 82, 729–747 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Fang, Z.W., Sun, H.W., Wang, H.: A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Comput. Math. Appl. 80, 1443–1458 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Fiorentino, G., Serra-Capizzano, S.: Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions. SIAM J. Sci. Comput. 17, 1068–1081 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Gabriel, A., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications, vol. II. Springer, Cham (2018)

    MATH  Google Scholar 

  18. Gatto, P., Hesthaven, J.S.: Numerical approximation of the fractional Laplacian via \(hp\)-finite elements, with an application to image denoising. J. Sci. Comput. 65, 249–270 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Glusa, C., Antil, H., D’Elia, M., van Bloemen Waanders, B., Weiss, C.J.: A fast solver for the fractional Helmholtz equation. SIAM J. Sci. Comput. 43, A1362–A1388 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Hao, Z.P., Zhang, Z.Q.: Optimal regularity and error estimates of a spectral Galerkin method for fractional advection-diffusion-reaction equations. SIAM J. Numer. Anal. 58, 211–233 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Hao, Z.P., Zhang, Z.Q., Du, R.: Fractional centered difference scheme for high-dimensional integral fractional Laplacian. J. Comput. Phys. 424, 109851 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Hon, S., Serra Capizzano, S., Wathen, A.: Band-Toeplitz preconditioners for ill-conditioned Toeplitz systems. BIT 62, 465–491 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Huang, X., Li, D.F., Sun, H.W., Zhang, F.: Preconditioners with symmetrized techniques for space fractional Cahn–Hilliard equations. J. Sci. Comput. 92, 41 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Huang, X., Lin, X.L., Ng, M.K., Sun, H.W.: Spectral analysis for preconditioning of multi-dimensional Riesz fractional diffusion equations. Numer. Math. Theory Methods Appl. 15, 565–591 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Huang, Y.H., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52, 3056–3084 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, 7–51 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Lin, X.L., Ng, M.K., Sun, H.W.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 38, 1580–1614 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Lin, X.L., Ng, M.K., Sun, H.W.: Efficient preconditioner of one-sided space fractional diffusion equation. BIT 58, 729–748 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., Karniadakis, G.E.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Meerschaert, M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2019)

    MATH  Google Scholar 

  33. Minden, V., Ying, L.X.: A simple solver for the fractional Laplacian in multiple dimensions. SIAM J. Sci. Comput. 42, A878–A900 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Noutsous, D., Serra-Capizzano, S., Vassalos, P.: Essential spectral equivalence via multiple step preconditioning and applications to ill conditioned Toeplitz matrices. Linear Algebra Appl. 491, 276–291 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  36. Potts, D., Steidl, G.: Preconditioners for ill-conditioned Toeplitz matrices. BIT 39, 513–533 (1999)

    MathSciNet  MATH  Google Scholar 

  37. Serra, S.: Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems. BIT 34, 579–594 (1994)

    MathSciNet  MATH  Google Scholar 

  38. Serra, S.: New PCG based algorithms for the solution of Hermitian Toeplitz systems. Calcolo 32, 153–176 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Serra, S.: Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems. Math. Comput. 66, 651–665 (1997)

    MathSciNet  MATH  Google Scholar 

  40. Serra, S.: On the extreme eigenvalues of Hermitian (block) Toeplitz matrices. Linear Algebra Appl. 270, 109–129 (1998)

    MathSciNet  MATH  Google Scholar 

  41. Serra, S.: Superlinear PCG methods for symmetric Toeplitz systems. Math. Comput. 68, 793–803 (1999)

    MathSciNet  MATH  Google Scholar 

  42. Serra-Capizzano, S.: Toeplitz preconditioners constructed from linear approximation processes. SIAM J. Matrix Anal. Appl. 20, 446–465 (1999)

    MathSciNet  MATH  Google Scholar 

  43. Sun, H.W., Jin, X.Q., Chang, Q.S.: Convergence of the multigrid method for ill-conditioned block Toeplitz systems. BIT 41, 179–190 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Vázquez, J.L.: The mathematical theories of diffusion: nonlinear and fractional diffusion. In: Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, pp. 205–278. Springer, Berlin (2017)

    Google Scholar 

  45. Zhang, J.L., Fang, Z.W., Sun, H.W.: Exponential-sum-approximation technique for variable-order time-fractional diffusion equations. J. Appl. Math. Comput. 68, 323–347 (2022)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, J.L., Fang, Z.W., Sun, H.W.: Fast second-order evaluation for variable-order Caputo fractional derivative with applications to fractional sub-diffusion equations. Numer. Math. Theor. Methods Appl. 15, 200–226 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported in part by research grants of the Science and Technology Development Fund, Macau SAR (File no. 0122/2020/A3), and University of Macau (File no. MYRG2020-00224-FST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Wei Sun.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, TY., Chen, F., Sun, HW. et al. Preconditioning Technique Based on Sine Transformation for Nonlocal Helmholtz Equations with Fractional Laplacian. J Sci Comput 97, 17 (2023). https://doi.org/10.1007/s10915-023-02332-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02332-0

Keywords

Mathematics Subject Classification

Navigation