Skip to main content
Log in

A High-Order Two-Grid Difference Method for Nonlinear Time-Fractional Biharmonic Problems and Its Unconditional \(\alpha \)-Robust Error Estimates

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we propose and analyze a high-order mapping operator between two grids to construct a high-order two-grid difference algorithm for nonlinear partial differential equations. This algorithm is then applied to solve a nonlinear time-fractional biharmonic equation for illustration, in which the cut-off technique and the auxiliary scheme approach are used to reduce the requirement on the nonlinear term to the local Lipschitz continuous condition, and the energy estimates are performed to avoid the usage of the inverse estimates and thus the time-step conditions. To treat the fractional operator, the Alikhanov’s scheme on the graded mesh is applied to deal with the weak singularity at initial time, while the compact difference method based on the order reduction is employed for high-order spatial discretization. The above methods and improvements as well as the properties of the high-order mapping operator are integrated with the analysis of the two-grid method to prove the unique solvability and the unconditionally robust error estimates of the proposed schemes under different norms. The developed techniques are further extended to discretize and analyze the two-grid method of two-dimensional problems. Numerical examples are provided to verify the effectiveness and efficiency of the two-grid algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Akrivis, G.D.: Finite difference discretization of the cubic Schr\({\rm \ddot{o} }\)dinger equation. IMA J. Numer. Anal. 13, 115–124 (1993)

    MathSciNet  Google Scholar 

  2. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Baeumer, B., Geissert, M., Kovács, M.: Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equations with multiplicative noise. J. Differ. Equ. 258, 535–554 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Ben-Artzi, M., Kramer, B.: Finite difference approach to fourth-order linear boundary-value problems. IMA J. Numer. Anal. 41, 2530–2561 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Berokelashvili, G., Gupta, M.M., Mirianashvilli, M.: Convergence of fourth order compact difference schemes for three-dimensional convection–diffusion equations. SIAM J. Numer. Anal. 45, 443–455 (2007)

    MathSciNet  Google Scholar 

  6. Bramble, J.H., Hilbert, S.R.: Bounds for a class of linear functionals with application to Hermite interpolation. Numer. Math. 16, 362369 (1971)

    MathSciNet  Google Scholar 

  7. Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79, 624–647 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Chen, H., Stynes, M.: Blow-up of error estimates in time-fractional initial-boundary value problems. IMA J. Numer. Anal. 41, 974–997 (2021)

    MathSciNet  MATH  Google Scholar 

  9. Chen, S., Shen, J., Zhang, Z., Zhou, Z.: A spectrally accurate approximation to subdiffusion equations using the log orthogonal functions. SIAM J. Sci. Comput. 42, A849–A877 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Chen, Y., Huang, Y., Yu, D.: A two-grid method for expanded mixed finite-element solution of semilinear reaction–diffusion equations. Int. J. Numer. Methods Eng. 57, 193–209 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35, 435–452 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Du, Y., Liu, Y., Li, H., Fang, Z., He, S.: Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J. Comput. Phys. 344, 108–126 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Halpern, D., Jensen, O.E., Grotberg, J.B.: A theoretical study of surfactant and liquid delivery into the lung. J. Appl. Physiol. 85, 333–352 (1998)

    Google Scholar 

  14. Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. ACM Trans. Graph. 23, 284–293 (2004)

    Google Scholar 

  15. Hou, T., Chen, L., Yang, Y., Yang, Y.: Two-grid Raviart–Thomas mixed finite element methods combined with Crank–Nicolson scheme for a class of nonlinear parabolic equations. Adv. Comput. Math. 46, 24 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Hu, X., Zhang, L.: A compact finite difference scheme for the fourth-order fractional diffusion-wave system. Comput. Phys. Common. 182, 1645–1650 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Huang, C., Stynes, M.: \(\alpha \)-robust error analysis of a mixed finite element method for a time-fractional biharmonic equation. Numer. Algorithms 87, 1749–1766 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Huang, C., Stynes, M.: A sharp \(\alpha \)-robust \({L}^{\infty }({H}^{1})\) error bound for a time-fractional Allen-Cahn problem discretised by the Alikhanov \({L}2\)-\(1_{ }\) scheme and a standard FEM. J. Sci. Comput. 91, 43 (2022)

    MATH  Google Scholar 

  19. Ji, C., Sun, Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56, 1–23 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Li, B., Ma, S.: Exponential convolution quadrature for nonlinear subdiffusion equations with nonsmooth initial data. SIAM J. Numer. Anal. 60, 503–528 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Li, M., Zhao, J., Huang, C., Chen, S.: Conforming and nonconforming VEMs for the fourth-order reaction–subdiffusion equation: a unified framework. IMA J. Numer. Anal. 42, 2238–2300 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Li, X., Rui, H.: A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation. J. Sci. Comput. 72, 863–891 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Liao, H., Mclean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Liao, H., Mclean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction–subdiffusion problem. Commun. Comput. Phys. 30, 567–601 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Liao, H., Sun, Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods PDE 26, 37–60 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80, 1369–1396 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Lu, X., Gao, G., Sun, Z.: Finite difference schemes for the fourth-order parabolic equations with different boundary value conditions. Numer. Methods PDE 39, 447–480 (2023)

    MathSciNet  Google Scholar 

  30. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87, 2259–2272 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Myers, T.G., Charpin, J.P.F.: A mathematical model for atmospheric ice accretion and water flow on a cold surface. Int. J. Heat. Mass. Transf. 47, 5483–5500 (2004)

    MATH  Google Scholar 

  33. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  34. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  35. Ren, J., Liao, H., Zhang, J., Zhang, Z.: Sharp \({H}^{1}\)-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. J. Comput. Appl. Math. 389, 113352 (2021)

    MATH  Google Scholar 

  36. Rui, H., Liu, W.: A two-grid block-centered finite difference method for Darcy–Forchheimer flow in porous media. SIAM J. Numer. Anal. 53, 1941–1962 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Sun, Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)

    Google Scholar 

  39. Wei, L., He, Y.: Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl. Math. Model. 38, 1511–1522 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    MathSciNet  MATH  Google Scholar 

  41. Xu, X., Zhang, C.: Convergence analysis of inexact two-grid methods: a theoretical framework. SIAM J. Numer. Anal. 60, 133–156 (2022)

    MathSciNet  MATH  Google Scholar 

  42. Zeng, Y., Tan, Z.: Two-grid finite element methods for nonlinear time fractional variable coefficient diffusion equations. Appl. Math. Comput. 434, 127408 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, H., Yang, X., Xu, D.: An efficient spline collocation method for a nonlinear fourth-order reaction subdiffusion equation. J. Sci. Comput. 85, 7 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, Q., Zhang, J., Jiang, S., Zhang, Z.: Numerical solution to a linearized time fractional kdv equation on unbounded domains. Math. Comput. 87, 693–719 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, Y., Feng, M.: A mixed virtual element method for the time-fractional fourth-order subdiffusion equation. Numer. Algorithms 90, 1617–1637 (2022)

    MathSciNet  MATH  Google Scholar 

  46. Zheng, X., Wang, H.: An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation. SIAM J. Numer. Anal. 58, 2492–2514 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Zheng, X., Wang, H.: Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer. Anal. 41, 1522–1545 (2021)

    MathSciNet  MATH  Google Scholar 

  48. Zhou, J., Yao, X., Wang, W.: Two-grid finite element methods for nonlinear time-fractional parabolic equations. Numer. Algorithms 90, 1617–1637 (2022)

    MathSciNet  Google Scholar 

Download references

Funding

This work is supported in part by funds from the National Natural Science Foundation of China Nos. 11971482 and 12131014, the Fundamental Research Funds for the Central Universities No. 202264006, the OUC Scientific Research Program for Young Talented Professionals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangcheng Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Zhang, B. & Zheng, X. A High-Order Two-Grid Difference Method for Nonlinear Time-Fractional Biharmonic Problems and Its Unconditional \(\alpha \)-Robust Error Estimates. J Sci Comput 96, 54 (2023). https://doi.org/10.1007/s10915-023-02282-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02282-7

Keywords

Mathematics Subject Classification

Navigation