Skip to main content
Log in

New Low-Dissipation Central-Upwind Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop new second-order low-dissipation central-upwind (LDCU) schemes for hyperbolic systems of conservation laws. Like all of the Godunov-type schemes, the proposed LDCU schemes are developed in three steps: reconstruction, evolution, and projection. A major novelty of our approach is in the projection step, which is based on a subcell resolution and designed to sharper approximate contact waves while ensuring a non-oscillatory property of the projected solution. In order to achieve this goal, we take into account properties of the contact waves. We design the LDCU schemes for both the one- and two-dimensional Euler equations of gas dynamics. The new schemes are tested on a variety of numerical examples. The obtained results clearly demonstrate that the proposed LDCU schemes contain substantially smaller amount of numerical dissipation and achieve higher resolution compared with their existing counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data and Software Availability

The data that support the findings of this study and FORTRAN codes developed by the authors and used to obtain all of the presented numerical results are available from the corresponding author upon reasonable request.

References

  1. Arminjon, P., St-Cyr, A., Madrane, A.: New two- and three- dimensional non-oscillatory central finite volume methods on staggered Cartesian grids. Appl. Numer. Math. 40, 367–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arminjon, P., Viallon, M.-C., Madrane, A.: A finite volume extension of the Lax–Friedrichs and Nessyahu–Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn. 9, 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Artzi, M., Falcovitz, J.: Generalized Riemann Problems in Computational Fluid Dynamics. Cambridge Monographs on Applied and Computational Mathematics, vol. 11. Cambridge University Press, Cambridge (2003)

  4. Bianco, F., Puppo, G., Russo, G.: High order central schemes for hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 21, 294–322 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chertock, A., Chu, S., Herty, M., Kurganov, A., Lukáčová-Medviďová, M.: Local characteristic decomposition based central-upwind scheme. J. Comput. Phys., 473 (2023). Paper No. 111718, 24 pp

  6. Fjordholm, U.S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions. Acta Numer. 25, 567–679 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep time Discretizations. World Scientific Publishing Co Pte. Ltd., Hackensack, NJ (2011)

    Book  MATH  Google Scholar 

  8. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, G.-S., Tadmor, E.: Nonoscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. Sci. Comput. 19, pp. 1892–1917 (electronic) (1998)

  10. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Kurganov, A., Liu, Y., Zeitlin, V.: Numerical dissipation switch for two-dimensional central-upwind schemes. ESAIM Math. Model. Numer. Anal. 55, 713–734 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kurganov, A., Petrova, G.: A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math. 88, 683–729 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurganov, A., Prugger, M., Wu, T.: Second-order fully discrete central-upwind scheme for two-dimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 39, A947–A965 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differ. Equ. 18, 584–608 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002)

  18. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. Modél. Math. Anal. Numér. 33, 547–571 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput., 22, pp. 656–672 (electronic) (2000)

  20. Levy, D., Puppo, G., Russo, G.: A fourth-order central WENO scheme for multidimension hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 24, 480–506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lie, K.-A., Noelle, S.: On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24, 1157–1174 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25, 995–1017 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, X.-D., Tadmor, E.: Third order nonoscillatory central schemes for hyperbolic conservation laws. Numer. Math. 79, 397–425 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Panuelos, J., Wadsley, J., Kevlahan, N.: Low shear diffusion central schemes for particle methods, J. Comput. Phys., 414. Paper No. 109454, 23 pp (2020)

  26. Qiu, J., Shu, C.-W.: On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183, 187–209 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schulz-Rinne, C.W.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24, 76–88 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14, 1394–1414 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shi, J., Zhang, Y.-T., Shu, C.-W.: Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186, 690–696 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer. 29, 701–762 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, third ed. Springer, Berlin (2009)

  34. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys., 32, pp. 101–136 (1979)

  35. Zheng, Y.: Systems of Conservation Laws: Two-Dimensional Riemann Problems, Progress in Nonlinear Differential Equations and their Applications, 38. Birkhäuser Boston Inc, Boston, MA (2001)

    Book  Google Scholar 

Download references

Funding

The work of A. Kurganov was supported in part by NSFC Grants 12171226 and 12111530004, and by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design (No. 2019B030301001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kurganov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurganov, A., Xin, R. New Low-Dissipation Central-Upwind Schemes. J Sci Comput 96, 56 (2023). https://doi.org/10.1007/s10915-023-02281-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02281-8

Keywords

Mathematics Subject Classification

Navigation