Skip to main content
Log in

The Effect of Anderson Acceleration on Superlinear and Sublinear Convergence

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper considers the effect of Anderson acceleration (AA) on the convergence order of nonlinear solvers in fixed point form \(x_{k+1}=g(x_k)\), that are looking for a fixed point \(x^*\) of g. While recent work has answered the fundamental question of how AA affects the convergence rate of linearly converging fixed point iterations (at a single step), no analytical results exist (until now) for how AA affects the convergence order of solvers that do not converge linearly. We first consider AA applied to general methods with convergence order r, and show that \(m=1\) AA changes the convergence order to (at least) \(\frac{r+1}{2}\); a more complicated expression for the order is found for the case of larger m. This result is valid for superlinearly converging methods and also locally for sublinearly converging methods where \(r<1\) locally but \(r\rightarrow 1\) as the iteration converges, revealing that AA slows convergence for superlinearly converging methods but (locally) accelerates it for sublinearly converging methods. We then consider AA-Newton, and find that it is a special case that fits in the framework of the recent theory for linearly converging methods which allows us to deduce that depth level m reduces the asymptotic convergence order from 2 to the largest positive real root of \(\alpha ^{m+1} -\alpha ^m -1=0\) (i.e. with \(m=1\) the order is 1.618, and decreases as m increases). Several numerical tests illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The code for the current study is available from the corresponding author on reasonable request.

References

  1. Amat, S., Busquier, S.: After notes on the Chebyshev’s iterative method. Appl. Math. Nonlinear Sci. 2, 1–12 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Argyros, I., Chen, D.: Results on the Chebyshev method in Banach spaces. Proyecciones 12(2), 119–128 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. An, H., Jia, X., Walker, H.F.: Anderson acceleration and application to the three-temperature energy equations. J. Comput. Phys. 347, 1–19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Mach. 12(4), 547–560 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aposporidis, A., Haber, E., Olshanskii, M., Veneziani, A.: A mixed formulation of the Bingham fluid flow problem: analysis and numerical solution. Comput. Methods Appl. Mech. Eng. 200, 2434–2446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ascher, U., Greif, C.: A First Course in Numerical Methods. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  7. Atkinson, K.: An Introduction to Numerical Analysis. Wiley, New York (1991)

    Google Scholar 

  8. Baruch, G., Fibich, G., Tsynkov, S.: High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension. J. Comput. Phys. 227, 820–850 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baruch, G., Fibich, G., Tsynkov, S.: A high-order numerical method for the nonlinear Helmholtz equation in multidimensional layered media. J. Comput. Phys. 228, 3789–3815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bercovier, M., Engelman, M.: A finite-element method for incompressible non-Newtonian flows. J. Comput. Phys. 36(3), 313–326 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bian, W., Chen, X.: Anderson acceleration for nonsmooth fixed point problems. SIAM J. Numer. Anal. (to appear) (2022)

  12. Bian, W., Chen, X., Kelley, C.T.: Anderson acceleration for a class of nonsmooth fixed-point problems. SIAM J. Sci. Comput. 43(5), S1–S20 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezinski, C., Cipolla, S., Redivo-Zaglia, M., Saad, Y.: Shanks and Anderson-type acceleration techniques for systems of nonlinear equations. IMA J. Numer. Anal. (2022) (to appear)

  14. Evans, C., Pollock, S., Rebholz, L., Xiao, M.: A proof that Anderson acceleration improves the convergence rate in linearly converging fixed-point methods (but not in those converging quadratically). SIAM J. Numer. Anal. 58, 788–810 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fibich, G., Tsynkov, S.V.: High-order two-way artificial boundary conditions for nonlinear wave propagation with backscattering. J. Comput. Phys. 171, 632–677 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fu, A., Zhang, J., Boyd, S.: Anderson accelerated Douglas–Rachford splitting. SIAM J. Sci. Comput. 42(6), A3560–A3583 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gautschi, W.: Numerical Analysis. Birkhauser, New York (2012)

    Book  MATH  Google Scholar 

  18. Hernandez, M., Salanova, M.: Chebyshev method and convexity. Appl. Math. Comput. 95, 51–62 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Higham, N., Strabic, N.: Anderson acceleration of the alternating projections method for computing the nearest correlation matrix. Numer. Algorithms 72, 1021–1042 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kelley, C.T.: Numerical methods for nonlinear equations. Acta Numer. 27, 207–287 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Loffeld, J., Woodward, C.: Considerations on the implementation and use of Anderson acceleration on distributed memory and GPU-based parallel computers. Adv. Math. Sci. 417–436 (2016)

  22. Lott, P.A., Walker, H.F., Woodward, C.S., Yang, U.M.: An accelerated Picard method for nonlinear systems related to variably saturated flow. Adv. Water Resour. 38, 92–101 (2012)

    Article  Google Scholar 

  23. Mitsoulis, E., Zisis, Th.: Flow of Bingham plastics in a lid-driven square cavity. J. Nonnewton. Fluid Mech. 101(1), 173–180 (2001)

    Article  MATH  Google Scholar 

  24. Olshanskii, M.A.: Analysis of semi-staggered finite-difference method with application to Bingham flows. Comput. Methods Appl. Mech. Eng. 198(9), 975–985 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peng, Y., Deng, B., Zhang, J., Geng, F., Qin, W., Liu, L.: Anderson acceleration for geometry optimization and physics simulation. ACM J. 37, 1–14 (2018)

    Google Scholar 

  26. Pollock, S.: Anderson acceleration for degenerate and nondegenerate problems. In: Deterministic and Stochastic Optimal Control and Inverse Problems, 1st edn, pp. 1–20 (2021)

  27. Pollock, S., Rebholz, L.: Anderson acceleration for contractive and noncontractive operators. IMA J. Numer. Anal. 41, 2841–2872 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pollock, S., Rebholz, L., Vargun, D.: An efficient nonlinear solver and convergence analysis for a viscoplastic flow model. Numer. Methods Partial Differ. Equ. (2022) (to appear)

  29. Pollock, S., Rebholz, L., Xiao, M.: Anderson-accelerated convergence of Picard iterations for incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 57, 615–637 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pollock, S., Rebholz, L., Xiao, M.: Acceleration of nonlinear solvers for natural convection problems. J. Numer. Math. 9(4), 1–19 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Pollock, S., Schwartz, H.: Benchmarking results for the Newton–Anderson method. Results Appl. Math. 8, 100095 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rebholz, L., Vargun, D., Xiao, M.: Enabling fast convergence of the iterated penalty Picard iteration with \(\cal{O} (1)\) penalty parameter for incompressible Navier–Stokes via Anderson acceleration. Comput. Methods Appl. Mech. Eng. 387(114178), 1–17 (2021)

    MATH  Google Scholar 

  33. De Sterck, H., He, Y.: On the asymptotic linear convergence speed of Anderson acceleration, Nesterov acceleration, and nonlinear GMRES. SIAM J. Sci. Comput. 43(5), S21–S46 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. De Sterck, H., He, Y.: Anderson acceleration as a Krylov method with application to asymptotic convergence analysis (2022) (submitted)

  35. De Sterck, H., He, Y.: Linear asymptotic convergence of Anderson acceleration: fixed-point analysis (2022) (submitted)

  36. Toth, A., Kelley, C.T., Slattery, S., Hamilton, S., Clarno, K., Pawlowski, R.: Analysis of Anderson acceleration on a simplified neutronics/thermal hydraulics system. In: Proceedings of the ANS MC2015 Joint International Conference on Mathematics and Computation (M &C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, ANS MC2015 CD:1–12 (2015)

  37. Toth, Alex, Kelley, C.T.: Convergence analysis for Anderson acceleration. SIAM J. Numer. Anal. 53, 805–819 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49(4), 1715–1735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, D., He, Y., De Sterck, H.: On the asymptotic linear convergence speed of Anderson acceleration applied to ADMM. J. Sci. Comput. 88(2:38), 1–35 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Wicht, D., Schneider, M., Bohlke, T.: Anderson-accelerated polarization schemes for fast Fourier transform-based computational homogenization. Int. J. Numer. Methods Eng. 122, 2287–2311 (2021)

    Article  MathSciNet  Google Scholar 

  41. Xiao, M.: Superlinear convergence of Anderson accelerated Newton’s method for solving stationary Navier–Stokes equations. Numer. Methods Partial Differ. Equ. (2023) (to appear). https://doi.org/10.1002/num.23001

  42. Yang, Y.: Anderson acceleration for seismic inversion. Geophysics 86, 1942–2156 (2021)

    Article  Google Scholar 

Download references

Funding

Partial financial support was received from NSF grant DMS 2011490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo G. Rebholz.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebholz, L.G., Xiao, M. The Effect of Anderson Acceleration on Superlinear and Sublinear Convergence. J Sci Comput 96, 34 (2023). https://doi.org/10.1007/s10915-023-02262-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02262-x

Keywords

Navigation