Skip to main content
Log in

A Novel Spectral Approximation and Error Estimation for Transmission Eigenvalues in Spherical Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze an efficient spectral-Galerkin method based on a mixed formulation with dimension reduction for the Helmholtz transmission eigenvalue problem in spherical domains. By introducing an auxiliary function, we rewrite the original problem as an equivalent fourth-order coupled form in spherical coordinates. Using the properties of spherical harmonic and Laplace–Beltrami operator, we further decompose the original problem into a series of decoupled one-dimensional fourth-order linear eigenvalue problems, for which a new mixed variational formulation and its discretization is developed. For error estimates of numerical eigenvalues and eigenfunctions, we recall the spectral theory of compact operators. Towards this end, we derive the essential polar conditions, define a class of weighted Sobolev spaces, and most importantly, prove a sequence of two compact embedding properties for the weighted Sobolev spaces, based on which the spectral theory of compact operators for the variational formulation and discrete system can be established. Finally, some numerical examples are presented to confirm the theoretical error analysis and the efficiency of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this paper because no data sets were generated or analyzed during the current study.

References

  1. Cakoni, F., Gintides, D.: New results on transmission eigenvalues. Inverse Probl. Imaging 4(1), 39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Colton, D., Päivärinta, L., Sylvester, J.: The interior transmission problem. Inverse Probl. Imaging 1(1), 13–28 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (2012)

    MATH  Google Scholar 

  4. Haddar, H.: The interior transmission problem for anisotropic maxwell’s equations and its applications to the inverse problem. Math. Methods Appl. Sci. 27(18), 2111–2129 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cakoni, F., Çayören, M., Colton, D.: Transmission eigenvalues and the nondestructive testing of dielectrics. Inverse Prob. 24(6), 065016 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cakoni, F., Colton, D., Haddar, H.: On the determination of Dirichlet or transmission eigenvalues from far field data. C.R. Math. 348(7–8), 379–383 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cakoni, F., Colton, D., Monk, P.: On the use of transmission eigenvalues to estimate the index of refraction from far field data. Inverse Prob. 23(2), 507 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cakoni, F., Colton, D., Monk, P., Sun, J.: The inverse electromagnetic scattering problem for anisotropic media. Inverse Prob. 26(7), 074004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy data. Inverse Prob. 27(1), 015009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cakoni, F., Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Appl. Anal. 88(4), 475–493 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hähner, P.: On the uniqueness of the shape of a penetrable, anisotropic obstacle. J. Comput. Appl. Math. 116(1), 167–180 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cakoni, F., Colton, D.: Qualitative Methods in Inverse Scattering Theory: An Introduction. Springer Verlag, Berlin (2006)

    MATH  Google Scholar 

  13. Cakoni, F., Colton, D., Haddar, H.: The computation of lower bounds for the norm of the index of refraction in an anisotropic media from far field data. J. Integral Equ. Appl. 21(2), 203–227 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42(1), 237–255 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kirsch, A.: On the existence of transmission eigenvalues. Inverse Probl. Imaging 3(2), 155–172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Päivärinta, L., Sylvester, J.: Transmission eigenvalues. SIAM J. Math. Anal. 40(2), 738–753 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cakoni, F., Haddar, H.: Transmission eigenvalues in inverse scattering theory. In: Uhlmann, G. (ed.) Inside Out II. MSRI Publications, Berkeley (2012)

    Google Scholar 

  18. Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Prob. 26(4), 045011 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cakoni, F., Monk, P., Sun, J.: Error analysis for the finite element approximation of transmission eigenvalues. Comput. Methods Appl. Math. 14(4), 419–427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ji, X., Sun, J., Turner, T.: Algorithm 922: a mixed finite element method for helmholtz transmission eigenvalues. ACM Trans. Math. Softw. 38(4), 29 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ji, X., Sun, J., Xie, H.: A multigrid method for helmholtz transmission eigenvalue problems. J. Sci. Comput. 60(2), 276–294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, J.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49(5), 1860–1874 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sun, J., Zhou, A.: Finite Element Methods for Eigenvalue Problems. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  24. Ji, X., Xi, Y., Xie, H.: Nonconforming finite element method for the transmission eigenvalue problem. Adv. Appl. Math. Mech. 9(1), 92–103 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, Y., Bi, H., Han, J.: Mixed methods for the helmholtz transmission eigenvalues. SIAM J. Sci. Comput. 38, A1383–A1403 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, Y., Han, J., Bi, H.: Non-conforming finite element methods for transmission eigenvalue problem. Comput. Methods Appl. Mech. Eng. 307, 144–163 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. An, J., Shen, J.: A spectral-element method for transmission eigenvalue problems. J. Sci. Comput. 57(3), 670–688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. An, J., Shen, J.: Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem. Comput. Math. Appl. 69, 1132–1143 (2015)

    MathSciNet  MATH  Google Scholar 

  29. An, J.: A Legendre-Galerkin spectral approximation and estimation of the index of refraction for transmission eigenvalues. Appl. Numer. Math. 108, 171–184 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, J., Fan, X.: An efficient spectral method for the helmholtz transmission eigenvalues in polar geometries. Discrete Contin. Dyn. Syst. -B 24(9), 4799 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Ren, S., Tan, T., An, J.: An efficient spectral-Galerkin approximation based on dimension reduction scheme for transmission eigenvalues in polar geometries. Comput. Math. Appl. 80(5), 940–955 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Tan, T., Cao, W., An, J.: Spectral approximation based on a mixed scheme and its error estimates for transmission eigenvalue problems. Comput. Math. Appl. 111, 20–33 (2022)

    MathSciNet  MATH  Google Scholar 

  33. Ma, L., Shen, J., Wang, L.-L.: Spectral approximation of time-harmonic Maxwell equations in three-dimentional exterior domains. Int. J. Numer. Anal. Model. 12(2), 1–18 (2015)

    MathSciNet  Google Scholar 

  34. Babuka, I., Osborn, J.E.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part 1), Handbook of Numerical Analysis. Elsevier Science Publishers, North-Holand (1991)

    Google Scholar 

  35. Tan, T., Li, L., An, J.: A novel spectral method and error analysis for fourth-order equations in a spherical region. Math. Comput. Simul. 200, 148–161 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  37. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijng (2006)

    MATH  Google Scholar 

  38. Golub, A., Gene, H., Van Loan, C.F.: Matrix Computations. The John Hopkins University Press, Baltimeore (1989)

    MATH  Google Scholar 

  39. Kwan, Y.-Y., Shen, J.: An efficient direct parallel elliptic solver by the spectral element method. J. Comput. Phys. 225, 1721–1735 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Zhang.

Ethics declarations

Conflict of interest

The authors have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research is supported by the National Natural Science Foundation of China (Grant Nos. 12061023) and Guizhou Normal University academic new talent foundation (Qian teacher new talent [2021]A04).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Tan, T. & Zhang, Z. A Novel Spectral Approximation and Error Estimation for Transmission Eigenvalues in Spherical Domains. J Sci Comput 96, 38 (2023). https://doi.org/10.1007/s10915-023-02261-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02261-y

Keywords

Navigation