Skip to main content
Log in

An Efficient Numerical Algorithm for the Model Describing the Competition Between Super- and Sub-diffusions Driven by Fractional Brownian Sheet Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Super- and sub-diffusions are two typical types of anomalous diffusions in the natural world. In this work, we discuss the numerical scheme for the model describing the competition between super- and sub-diffusions driven by fractional Brownian sheet noise. Based on the obtained regularization result of the solution by using the properties of Mittag–Leffler function and the regularized noise by Wong–Zakai approximation, we make full use of the regularity of the solution operators to achieve optimal convergence of the regularized solution. The spectral Galerkin method and the Mittag–Leffler Euler integrator are respectively used to deal with the space and time operators. In particular, by contour integral, the fast evaluation of the Mittag–Leffler Euler integrator is realized. We provide complete error analyses, which are verified by the numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anton, R., Cohen, D., Quer-Sardanyons, L.: A fully discrete approximation of the one-dimensional stochastic heat equation. IMA J. Numer. Anal. 40(1), 247–284 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonito, A., Lei, W., Pasciak, J.E.: Numerical approximation of the integral fractional Laplacian. Numer. Math. 142(2), 235–278 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  5. Cao, Y., Hong, J., Liu, Z.: Approximating stochastic evolution equations with additive white and rough noises. SIAM J. Numer. Anal. 55(4), 1958–1981 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dai, X., Hong, J., Sheng, D.: Well-posedness and Mittag–Leffler Euler integrator for space-time fractional SPDEs with fractionally integrated additive noise. arXiv:2206.00320 (2022)

  7. Deng, W., Hou, R., Wang, W., Xu, P.: Modeling Anomalous Diffusion: From Statistics to Mathematics. World Scientific, Singapore (2020)

    Book  MATH  Google Scholar 

  8. Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comput. 58(198), 603–630 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gunzburger, M., Li, B., Wang, J.: Convergence of finite element solutions of stochastic partial integro-differential equations driven by white noise. Numer. Math. 141(4), 1043–1077 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gunzburger, M., Li, B., Wang, J.: Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise. Math. Comput. 88(318), 1715–1741 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I. Potential Anal. 9(1), 1–25 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II. Potential Anal. 11(1), 1–37 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library, North-Holland Pub. Co., Amsterdam (1981)

    MATH  Google Scholar 

  15. Kamont, A.: On the fractional anisotropic Wiener field. Probab. Math. Stat. 16(1), 85–98 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 1st edn. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  17. Kovács, M., Larsson, S., Saedpanah, F.: Mittag–Leffler Euler integrator for a stochastic fractional order equation with additive noise. SIAM J. Numer. Anal. 58(1), 66–85 (2020)

  18. Laptev, A.: Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J. Funct. Anal. 151(2), 531–545 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, B., Ma, S.: Exponential convolution quadrature for nonlinear subdiffusion equations with nonsmooth initial data. SIAM J. Numer. Anal. 60(2), 503–528 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, P., Yau, S.T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88(3), 309–318 (1983)

    Article  MATH  Google Scholar 

  21. Nie, D., Deng, W.: A unified convergence analysis for the fractional diffusion equation driven by fractional Gaussian noise with Hurst index \(H\in (0,1)\). SIAM J. Numer. Anal. 60(3), 1548–1573 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nie, D., Sun, J., Deng, W.: Numerical approximation for stochastic nonlinear fractional diffusion equation driven by rough noise. arXiv:2201.10897 (2022)

  23. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, Academic Press, San Diego (1999)

    MATH  Google Scholar 

  24. Quer-Sardanyons, L., Sanz-Solé, M.: Space semi-discretisations for a stochastic wave equation. Potential Anal. 24(4), 303–332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 23(2), 165–224 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sussmann, H.J.: On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab. 6(1), 19–41 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, X., Qi, R., Jiang, F.: Sharp mean-square regularity results for SPDEs with fractional noise and optimal convergence rates for the numerical approximations. BIT 57(2), 557–585 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wong, E., Zakai, M.: On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Stat. 36(5), 1560–1564 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wong, E., Zakai, M.: On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3(2), 213–229 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12071195, 12201270, and 12225107, the Innovative Groups of Basic Research in Gansu Province under Grant No. 22JR5RA391, the science and technology plan of Gansu Province under Grant No. 22JR5RA535, the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2022-pd04, and China Postdoctoral Science Foundation under Grant No. 2022M721439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Nie, D. & Deng, W. An Efficient Numerical Algorithm for the Model Describing the Competition Between Super- and Sub-diffusions Driven by Fractional Brownian Sheet Noise. J Sci Comput 96, 10 (2023). https://doi.org/10.1007/s10915-023-02240-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02240-3

Keywords

Navigation