Skip to main content
Log in

Multidimensional Generalized Riemann Problem Solver for Maxwell’s Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Approximate multidimensional Riemann solvers are essential building blocks in designing globally constraint-preserving finite volume time domain and discontinuous Galerkin time domain schemes for computational electrodynamics (CED). In those schemes, we can achieve high-order temporal accuracy with the help of Runge–Kutta or ADER time-stepping. This paper presents the design of a multidimensional approximate generalized Riemann problem (GRP) solver for the first time. The multidimensional Riemann solver accepts as its inputs the four states surrounding an edge on a structured mesh, and its output consists of a resolved state and its associated fluxes. In contrast, the multidimensional GRP solver accepts as its inputs the four states and their gradients in all directions; its output consists of the resolved state and its corresponding fluxes and the gradients of the resolved state. The gradients can then be used to extend the solution in time. As a result, we achieve second-order temporal accuracy in a single step. In this work, the formulation is optimized for linear hyperbolic systems with stiff, linear source terms because such a formulation will find maximal use in CED. Our formulation produces an overall constraint-preserving time-stepping strategy based on the GRP that is provably L-stable in the presence of stiff source terms. We present several stringent test problems, showing that the multidimensional GRP solver for CED meets its design accuracy and performs stably with optimal time steps. The test problems include cases with high conductivity, showing that the beneficial L-stability is indeed realized in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The corresponding author will make numerically simulated data available under reasonable request.

References

  1. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

  2. Taflove, A., Brodwin, M.E.: Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans. Microw. Theory Tech. 23(8), 623–630 (1975)

    Article  Google Scholar 

  3. Taflove, A.: Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures. Wave Motion 10(6), 547–582 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Taflove, A., Hagness, S.C.: Computational Electrodynamics, vol. 28. Artech House Publishers, Norwood (2000)

    MATH  Google Scholar 

  5. Taflove, A., Hagness, S.C.: Finite-difference time-domain solution of Maxwell’s equations. Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1–33 (1999)

  6. Angulo, L., Alvarez, J., Pantoja, M., Garcia, S., Bretones, A.: Discontinuous Galerkin time domain methods in computational electrodynamics: state of the art. In: Forum for Electromagnetic Research Methods and Application Technologies, vol. 10, pp. 1–24 (2015)

  7. Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)

  9. Chen, J., Liu, Q.H.: Discontinuous Galerkin time-domain methods for multiscale electromagnetic simulations: A review. Proc. IEEE 101(2), 242–254 (2012)

    Article  Google Scholar 

  10. Chen, J., Liu, Q.H.: A non-spurious vector spectral element method for Maxwell’s equations. Prog. Electromagn. Res. 96, 205–215 (2009)

    Article  Google Scholar 

  11. Ren, Q., Tobón, L.E., Sun, Q., Liu, Q.H.: A new 3-D nonspurious discontinuous Galerkin spectral element time-domain (DG-SETD) method for Maxwell’s equations. IEEE Trans. Antennas Propag. 63(6), 2585–2594 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, H., Xu, L., Li, B., Descombes, S., Lantéri, S.: A new family of exponential-based high-order DGTD methods for modeling 3-D transient multiscale electromagnetic problems. IEEE Trans. Antennas Propag. 65(11), 5960–5974 (2017)

    Article  Google Scholar 

  13. Sun, Q., Zhang, R., Zhan, Q., Liu, Q.H.: A novel coupling algorithm for perfectly matched layer with wave equation-based discontinuous Galerkin time-domain method. IEEE Trans. Antennas Propag. 66(1), 255–261 (2017)

    Article  Google Scholar 

  14. Balsara, D.S., Amano, T., Garain, S., Kim, J.: A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism. J. Comput. Phys. 318, 169–200 (2016). https://doi.org/10.1016/j.jcp.2016.05.006

    Article  MathSciNet  MATH  Google Scholar 

  15. Balsara, D.S., Taflove, A., Garain, S., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution—Part I, second-order FVTD schemes. J. Comput. Phys. 349, 604–635 (2017). https://doi.org/10.1016/j.jcp.2017.07.024

    Article  MathSciNet  MATH  Google Scholar 

  16. Balsara, D.S., Garain, S., Taflove, A., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution—Part II, higher order FVTD schemes. J. Comput. Phys. 354, 613–645 (2018). https://doi.org/10.1016/j.jcp.2017.10.013

    Article  MathSciNet  MATH  Google Scholar 

  17. Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional Riemann solvers. J. Comput. Phys. 336, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally constraint-preserving DGTD and PNPM schemes for the Maxwell’s equations using multidimensional Riemann solvers. J. Comput. Phys. 376, 1108–1137 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hazra, A., Chandrashekar, P., Balsara, D.S.: Globally constraint-preserving FR/DG scheme for Maxwell’s equations at all orders. J. Comput. Phys. 394, 298–328 (2019). https://doi.org/10.1016/j.jcp.2019.06.003

    Article  MathSciNet  MATH  Google Scholar 

  20. Balsara, D.S.: Divergence-free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174(2), 614–648 (2001). https://doi.org/10.1006/jcph.2001.6917

    Article  MathSciNet  MATH  Google Scholar 

  21. Balsara, D.S.: Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151(1), 149 (2004)

    Article  Google Scholar 

  22. Balsara, D.S.: Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 228(14), 5040–5056 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Balsara, D.S., Dumbser, M.: Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. J. Comput. Phys. 299, 687–715 (2015). https://doi.org/10.1016/j.jcp.2015.07.012

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu, Z., Balsara, D.S., Du, H.: Divergence-free WENO reconstruction-based finite volume scheme for solving ideal MHD equations on triangular meshes. Commun. Comput. Phys. 19(4), 841–880 (2016). https://doi.org/10.4208/cicp.050814.040915a

    Article  MathSciNet  MATH  Google Scholar 

  25. Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229(6), 1970–1993 (2010). https://doi.org/10.1016/j.jcp.2009.11.018

    Article  MathSciNet  MATH  Google Scholar 

  26. Balsara, D.S.: A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231(22), 7476–7503 (2012). https://doi.org/10.1016/j.jcp.2011.12.025

    Article  MathSciNet  MATH  Google Scholar 

  27. Balsara, D.S.: Multidimensional Riemann problem with self-similar internal structure. Part I—application to hyperbolic conservation laws on structured meshes. J. Comput. Phys. 277, 163–200 (2014). https://doi.org/10.1016/j.jcp.2014.07.053

  28. Balsara, D.S.: Three dimensional HLL Riemann solver for conservation laws on structured meshes; application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 295, 1–23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLLC Riemann solver for unstructured meshes-with application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Balsara, D.S., Dumbser, M.: Multidimensional Riemann problem with self-similar internal structure. Part II—application to hyperbolic conservation laws on unstructured meshes. J. Comput. Phys. 287, 269–292 (2015). https://doi.org/10.1016/j.jcp.2014.11.004

  31. Balsara, D.S., Vides, J., Gurski, K., Nkonga, B., Dumbser, M., Garain, S., Audit, E.: A two-dimensional Riemann solver with self-similar sub-structure-alternative formulation based on least squares projection. J. Comput. Phys. 304, 138–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Balsara, D.S., Nkonga, B.: Multidimensional Riemann problem with self-similar internal structure-Part III-a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems. J. Comput. Phys. 346, 25–48 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Smith, W.S., Razmadze, A., Shao, X.M., Drewniak, J.L.: A hierarchy of explicit low-dispersion FDTD methods for electrically large problems. IEEE Trans. Antennas Propag. 60(12), 5787–5800 (2012). https://doi.org/10.1109/TAP.2012.2209860

    Article  MathSciNet  MATH  Google Scholar 

  34. Williamson, J.: Low-storage Runge–Kutta schemes. J. Comput. Phys. 35(1), 48–56 (1980). https://doi.org/10.1016/0021-9991(80)90033-9

    Article  MathSciNet  MATH  Google Scholar 

  35. Hu, F., Hussaini, M., Manthey, J.: Low-dissipation and low-dispersion Runge–Kutta schemes for computational acoustics. J. Comput. Phys. 124(1), 177–191 (1996). https://doi.org/10.1006/jcph.1996.0052

    Article  MathSciNet  MATH  Google Scholar 

  36. Berland, J., Bogey, C., Marsden, O., Bailly, C.: High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems. J. Comput. Phys. 224(2), 637–662 (2007). https://doi.org/10.1016/j.jcp.2006.10.017

    Article  MathSciNet  MATH  Google Scholar 

  37. Niegemann, J., Diehl, R., Busch, K.: Efficient low-storage Runge–Kutta schemes with optimized stability regions. J. Comput. Phys. 231(2), 364–372 (2012). https://doi.org/10.1016/j.jcp.2011.09.003

    Article  MathSciNet  MATH  Google Scholar 

  38. Diehl, R., Busch, K., Niegemann, J.: Comparison of low-storage Runge–Kutta schemes for discontinuous Galerkin time-domain simulations of Maxwell’s equations. J. Comput. Theor. Nanosci. 7(8), 1572–1580 (2010)

    Article  Google Scholar 

  39. Sármány, D., Botchev, M.A., van der Vegt, J.J.W.: Dispersion and dissipation error in high-order Runge–Kutta discontinuous Galerkin discretisations of the Maxwell’s equations. J. Sci. Comput. 33(1), 47–74 (2007). https://doi.org/10.1007/s10915-007-9143-y

    Article  MathSciNet  MATH  Google Scholar 

  40. Chen, M.H., Cockburn, B., Reitich, F.: High-order RKDG methods for computational electromagnetics. J. Sci. Comput. 22–23(1–3), 205–226 (2005). https://doi.org/10.1007/s10915-004-4152-6

    Article  MathSciNet  MATH  Google Scholar 

  41. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008). https://doi.org/10.1016/j.jcp.2008.05.025

    Article  MathSciNet  MATH  Google Scholar 

  42. Dumbser, M., Zanotti, O., Hidalgo, A., Balsara, D.S.: ADER-WENO finite volume schemes with space-time adaptive mesh refinement. J. Comput. Phys. 248, 257–286 (2013). https://doi.org/10.1016/j.jcp.2013.04.017

    Article  MathSciNet  MATH  Google Scholar 

  43. Balsara, D.S., Rumpf, T., Dumbser, M., Munz, C.D.: Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys. 228(7), 2480–2516 (2009). https://doi.org/10.1016/j.jcp.2008.12.003

    Article  MathSciNet  MATH  Google Scholar 

  44. Balsara, D.S., Meyer, C., Dumbser, M., Du, H., Xu, Z.: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes—speed comparisons with Runge–Kutta methods. J. Comput. Phys. 235, 934–969 (2013). https://doi.org/10.1016/j.jcp.2012.04.051

    Article  MathSciNet  MATH  Google Scholar 

  45. Taube, A., Dumbser, M., Munz, C.D., Schneider, R.: A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations. Int. J. Numer. Model. Electron. Networks Devices Fields 22(1), 77–103 (2009). https://doi.org/10.1002/jnm.700

    Article  MATH  Google Scholar 

  46. Floch, P.L., Raviart, P.A.: An asymptotic expansion for the solution of the generalized Riemann problem Part I: general theory. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 5, 179–207 (1988). https://doi.org/10.1016/S0294-1449(16)30350-X

    Article  MATH  Google Scholar 

  47. Titarev, V.A., Toro, E.F.: ADER: Arbitrary high order Godunov approach. J. Sci. Comput. 17(1), 609–618 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional non-linear hyperbolic systems. J. Comput. Phys. 204(2), 715–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Toro, E.F., Millington, R., Nejad, L.: Towards very high order Godunov schemes. In: Godunov methods, pp. 907–940. Springer, Berlin (2001)

  50. Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection-reaction equations. Proc. Math. Phys. Eng. Sci. 458(2018), 271–281 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Qian, J., Li, J., Wang, S.: The generalized Riemann problems for compressible fluid flows: towards high order. J. Comput. Phys. 259, 358–389 (2014). https://doi.org/10.1016/j.jcp.2013.12.002

    Article  MathSciNet  MATH  Google Scholar 

  52. Montecinos, G.I., Toro, E.F.: Reformulations for general advection–diffusion–reaction equations and locally implicit ADER schemes. J. Comput. Phys. 275, 415–442 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu, K., Yang, Z., Tang, H.: A third-order accurate direct Eulerian GRP scheme for the Euler equations in gas dynamics. J. Comput. Phys. 264, 177–208 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Goetz, C.R., Dumbser, M.: A novel solver for the generalized Riemann problem based on a simplified LeFloch-Raviart expansion and a local space-time discontinuous Galerkin formulation. J. Sci. Comput. 69(2), 805–840 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Goetz, C.R., Balsara, D.S., Dumbser, M.: A family of HLL-type solvers for the generalized Riemann problem. Comput. Fluids 169, 201–212 (2018). https://doi.org/10.1016/j.compfluid.2017.10.028

    Article  MathSciNet  MATH  Google Scholar 

  56. Ben-Artzi, M., Falcovitz, J.: A second-order Godunov-type scheme for compressible fluid dynamics. J. Comput. Phys. 55(1), 1–32 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ben-Artzi, M., Falcovitz, J.: An upwind second-order scheme for compressible duct flows. SIAM J. Sci. Stat. Comput. 7(3), 744–768 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ben-Artzi, M., Falcovitz, J.: Generalized Riemann Problems in Computational Fluid Dynamics, vol. 11. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  59. Ben-Artzi, M.: The generalized Riemann problem for reactive flows. J. Comput. Phys. 81(1), 70–101 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ben-Artzi, M., Birman, A.: Computation of reactive duct flows in external fields. J. Comput. Phys. 86(1), 225–255 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  61. Bourgeade, A., Floch, P.L., Raviart, P.A.: An asymptotic expansion for the solution of the generalized Riemann problem. Part 2: application to the equations of gas dynamics. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 6, 437–480 (1989). https://doi.org/10.1016/S0294-1449(16)30310-9

  62. Balsara, D.S., Li, J., Montecinos, G.I.: An efficient, second order accurate, universal generalized Riemann problem solver based on the HLLI Riemann solver. J. Comput. Phys. 375, 1238–1269 (2018). https://doi.org/10.1016/j.jcp.2018.09.018

    Article  MathSciNet  MATH  Google Scholar 

  63. Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLLC Riemann solver for unstructured meshes—with application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014). https://doi.org/10.1016/j.jcp.2013.12.029

    Article  MathSciNet  MATH  Google Scholar 

  64. J, Li., Z, Du.: A two-stage fourth order time-accurate discretization for Lax–Wendroff type flow solvers I. Hyperbolic conservation laws. SIAM J. Sci. Comput. 38(5), A3046–A3069 (2016). https://doi.org/10.1137/15M1052512

    Article  MathSciNet  MATH  Google Scholar 

  65. Christlieb, A.J., Gottlieb, S., Grant, Z., Seal, D.C.: Explicit strong stability preserving multistage two-derivative time-stepping schemes. J. Sci. Comput. 68(3), 914–942 (2016). https://doi.org/10.1007/s10915-016-0164-2

    Article  MathSciNet  MATH  Google Scholar 

  66. Grant, Z., Gottlieb, S., Seal, D.C.: A strong stability preserving analysis for explicit multistage two-derivative time-stepping schemes based on Taylor series conditions. Commun. Appl. Math. Comput. 1(1), 21–59 (2019). https://doi.org/10.1007/s42967-019-0001-3

    Article  MathSciNet  MATH  Google Scholar 

  67. Harten, A., Lax, P.D., Leer, B.V.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  68. Boscheri, W., Dumbser, M., Balsara, D.S.: High-order ADER-WENO ALE schemes on unstructured triangular meshes-application of several node solvers to hydrodynamics and magnetohydrodynamics. Int. J. Numer. Methods Fluids 76(10), 737–778 (2014). https://doi.org/10.1002/fld.3947

    Article  MathSciNet  Google Scholar 

  69. Boscheri, W., Balsara, D.S., Dumbser, M.: Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. J. Comput. Phys. 267, 112–138 (2014). https://doi.org/10.1016/j.jcp.2014.02.023

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Arijit Hazra acknowledges support from the Airbus chair on Mathematics of Complex Systems at TIFR-CAM to visit University of Notre Dame. Several simulations were performed on a cluster at UND that is run by the Center for Research Computing. Computer support on NSF’s XSEDE and Blue Waters computing resources is also acknowledged.

Funding

Dinshaw S. Balsara acknowledges support via NSF Grants NSF-ACI-1533850, NSF-DMS-1622457, NSF-ACI-1713765 and NSF-DMS-1821242. Arijit Hazra would like to acknowledge funding support from the Ramanujan Fellowship (RJF/2022/000046) administered by SERB-DST, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Hazra.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, A., Balsara, D.S., Chandrashekar, P. et al. Multidimensional Generalized Riemann Problem Solver for Maxwell’s Equations. J Sci Comput 96, 26 (2023). https://doi.org/10.1007/s10915-023-02238-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02238-x

Keywords

Mathematics Subject Classification

Navigation