Skip to main content
Log in

Error Estimates of Conforming Virtual Element Methods with a Modified Symmetric Nitsche’s Formula for 2D Semilinear Parabolic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study the \(H^1\)-conforming virtual element method for the spatial discretization of semilinear parabolic equations with inhomogeneous Dirichlet boundary conditions based on a modified symmetric Nitsche’s formula. Herein, the modified Nitsche’s formula is constructed by introducing a global lifting operator which maps the trace of an \(H^1\)-function into the global conforming virtual element space. In contrast to the classical symmetric Nitsche’s method, the penalty parameter in the modified symmetric Nitsche’s method does not need to be greater than a strictly positive lower bound, and it only needs to be greater than 0 to provide a coercive spatial bilinear form. For time discretization, the second-order backward difference formula is used. On the basis of some assumptions on the given problem data, the optimal error estimates in both an energy norm and \(L^2\)-norm are established for the semi-discrete and fully discrete schemes. The theoretical results are verified by some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31(6), 2110–2134 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Zhao, J., Zhang, B., Zhu, X.: The nonconforming virtual element method for parabolic problems. Appl. Numer. Math. 143, 97–111 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Adak, D., Natarajan, E., Kumar, S.: Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 35(1), 222–245 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Adak, D., Natarajan, E., Kumar, S.: Virtual element method for semilinear hyperbolic problems on polygonal meshes. Int. J. Comput. Math. 96(5), 971–991 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Dehghan, M., Gharibi, Z., Eslahchi, M.R.: Unconditionally energy stable \(C^0\)-virtual element scheme for solving generalized Swift–Hohenberg equation. Appl. Numer. Math. 178, 304–328 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Li, M., Zhao, J., Wang, N., Chen, S.: Conforming and nonconforming conservative virtual element methods for nonlinear Schrödinger equation: a unified framework. Comput. Methods Appl. Mech. Eng. 380, 113793 (2021)

    MATH  Google Scholar 

  8. Adak, D., Natarajan, S.: Virtual element methods for nonlocal parabolic problems on general type of meshes. Adv. Comput. Math. 46(5), 74 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Anaya, V., Bendahmane, M., Mora, D., Sepúlveda, M.: A virtual element method for a nonlocal FitzHugh–Nagumo model of cardiac electrophysiology. IMA J. Numer. Anal. 40(2), 1544–1576 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Gómez, S.A.: High-order interpolatory serendipity virtual element method for semilinear parabolic problems. Calcolo 59(3), 25 (2022)

    MathSciNet  MATH  Google Scholar 

  11. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Serendipity nodal VEM spaces. Comput. Fluids 141, 2–12 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Bürger, R., Kumar, S., Mora, D., Ruiz-Baier, R., Verma, N.: Virtual element methods for the three-field formulation of time-dependent linear poroelasticity. Adv. Comput. Math. 47(1), 2 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Adak, D., Natarajan, S.: On the \(H^1\) conforming virtual element method for time dependent Stokes equation. Math. Comput. Sci. 15(1), 135–154 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Adak, D., Mora, D., Natarajan, S., Silgado, A.: A virtual element discretization for the time dependent Navier–Stokes equations in stream-function formulation. ESAIM Math. Model. Numer. Anal. 55(5), 2535–2566 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Irisarri, D., Hauke, G.: Stabilized virtual element methods for the unsteady incompressible Navier–Stokes equations. Calcolo 56(4), 38 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Beirão da Veiga, L., Pichler, A., Vacca, G.: A virtual element method for the miscible displacement of incompressible fluids in porous media. Comput. Methods Appl. Mech. Eng. 375, 113649 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Beirão da Veiga, L., Dassi, F., Manzini, G., Mascotto, L.: Virtual elements for Maxwell’s equations. Comput. Math. Appl. 116, 82–99 (2022)

    MathSciNet  MATH  Google Scholar 

  18. Alvarez, S.N., Bokil, V., Gyrya, V., Manzini, G.: The virtual element method for resistive magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 381, 113815 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Ben Belgacem, F., El Fekih, H., Raymond, J.P.: A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions. Asymptot. Anal. 34(2), 121–136 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Arada, N., Raymond, J.P.: Dirichlet boundary control of semilinear parabolic equations Part 1: problems with no state constraints. Appl. Math. Optim. 45(2), 125–143 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Bertoluzza, S., Pennacchio, M., Prada, D.: High order VEM on curved domains. Rend. Lincei Mat. Appl. 30(2), 391–412 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Bertoluzza, S., Pennacchio, M., Prada, D.: Weakly imposed Dirichlet boundary conditions for 2D and 3D virtual elements. Comput. Methods Appl. Mech. Eng. 400, 115454 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Cascavita, K.L., Chouly, F., Ern, A.: Hybrid high-order discretizations combined with Nitsche’s method for Dirichlet and Signorini boundary conditions. IMA J. Numer. Anal. 40(4), 2189–2226 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Burman, E.: A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions. SIAM J. Numer. Anal. 50(4), 1959–1981 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Larson, M.G., Niklasson, A.J.: Analysis of a nonsymmetric discontinuous Galerkin method for elliptic problems: stability and energy error estimates. SIAM J. Numer. Anal. 42(1), 252–264 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Gudi, T., Nataraj, N., Pani, A.K.: On \(L^2\)-error estimate for nonsymmetric interior penalty Galerkin approximation to linear elliptic problems with nonhomogeneous Dirichlet data. J. Comput. Appl. Math. 228(1), 30–40 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Ludescher, T., Gross, S., Reusken, A.: A multigrid method for unfitted finite element discretizations of elliptic interface problems. SIAM J. Sci. Comput. 42(1), A318–A342 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Burman, E., Cicuttin, M., Delay, G., Ern, A.: An unfitted hybrid high-order method with cell agglomeration for elliptic interface problems. SIAM J. Sci. Comput. 43(2), A859–A882 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations. Springer, Berlin (2003)

    MATH  Google Scholar 

  30. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Brenner, S.C., Guan, Q., Sung, L.Y.: Some estimates for virtual element methods. Comput. Methods Appl. Math. 17(4), 553–574 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55(1), 5 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Mazzia, A.: A numerical study of the virtual element method in anisotropic diffusion problems. Math. Comput. Simul. 177, 63–85 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Atkinson, K., Han, W.: Theoretical Numerical Analysis. Springer, New York (2009)

    MATH  Google Scholar 

  37. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  38. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

    MATH  Google Scholar 

  39. Brazhnik, P.K., Tyson, J.J.: On traveling wave solutions of Fisher’s equation in two spatial dimensions. SIAM J. Appl. Math. 60(2), 371–391 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Tan, Y., Xu, H., Liao, S.J.: Explicit series solution of travelling waves with a front of Fisher equation. Chaos Solitons Fractals 31(2), 462–472 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Chafee, N., Infante, E.F.: A bifurcation problem for a nonlinear partial differential equation of parabolic type. Appl. Anal. 4(1), 17–37 (1974)

    MathSciNet  MATH  Google Scholar 

  42. Wu, F., Cheng, X., Li, D., Duan, J.: A two-level linearized compact ADI scheme for two-dimensional nonlinear reaction–diffusion equations. Comput. Math. Appl. 75(8), 2835–2850 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are greatly indebted to the referees for useful comments.

Funding

This work is supported by the National Natural Science Foundation of China (Project Numbers: 11771112, 12071100) and the Fundamental Research Funds for the Central Universities (Project Number: 2022FRFK060019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjun Zhao.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhou, Z. & Zhao, J. Error Estimates of Conforming Virtual Element Methods with a Modified Symmetric Nitsche’s Formula for 2D Semilinear Parabolic Equations. J Sci Comput 95, 69 (2023). https://doi.org/10.1007/s10915-023-02188-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02188-4

Keywords

Mathematics Subject Classification

Navigation