Skip to main content
Log in

A viscoelastic Timoshenko Beam Model: Regularity and Numerical Approximation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We derive a fully-discrete finite element scheme to a fractional Timoshenko beam model, which characterizes the mechanical responses of viscoelastic beams, thick beams and beams subject to high-frequency excitations by properly considering the effects of both transverse shear and rotational inertia. We prove high-order regularity of the solutions to the model and then accordingly prove error estimates of the numerical scheme. Numerical experiments are performed to substantiate the numerical analysis results and to demonstrate the effectiveness of the fractional Timoshenko beam model in modeling the mechanical vibrations of different beams, in comparison with its integer-order analogue and the widely-used integer-order and fractional Euler-Bernoulli beam models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R., Fournier, J.: Sobolev Spaces. Elsevier, New York (2003)

    MATH  Google Scholar 

  2. Bagley, R.: Power law and fractional calculus model of viscoelasticity. AIAA J. 27, 1412–1417 (1989)

    Google Scholar 

  3. Bonfanti, A., Kaplan, J., Charras, G., Kabla, A.: Fractional viscoelastic models for power-law materials. Soft Matter 16, 6002–6020 (2020)

    Google Scholar 

  4. Chen, H., Qiu, W., Zaky, M., Hendy, A.: A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel. Calcolo 60, 13 (2023)

    MathSciNet  MATH  Google Scholar 

  5. Christensen, R.: Theory of Viscoelasticity: An Introduction. Academic Press, New York (1982)

    Google Scholar 

  6. Deng, W., Li, C., Lü, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Diethelm, K.: The Analysis of Fractional Differential Equations, Ser. Lecture Notes in Mathematics, vol. 2004. Springer-Verlag, Berlin (2010)

  8. Eldred, L., Baker, W., Palazotto, A.: Kelvin-Voigt versus fractional derivative model as constitutive relations for viscoelastic materials. AIAA J. 33, 547–550 (1995)

    MATH  Google Scholar 

  9. Ervin, V., Roop, J.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Evans, L.: Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, RI (1998)

  11. Gunzburger, M., Li, B., Wang, J.: Convergence of finite element solutions of stochastic partial integro-differential equations driven by white noise. Numer. Math. 141, 1043–1077 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Guo, Y., Yu, G., Xie, X.: Uniform analysis of a stabilized hybrid finite element method for Reissner-Mindlin plates. Sci. China Math. 56, 1727–1742 (2013)

    MathSciNet  MATH  Google Scholar 

  13. He, Y., Lin, Y., Shen, S., Sun, W., Tait, R.: Finite element approximation for the viscoelastic fluid motion problem. J. Comput. Appl. Math. 155, 201–222 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Inman, D.: Engineering Vibrations, 4th edn. Pearson, New Jersey (2014)

    Google Scholar 

  15. Jaiseenkar, A., McKinley, G.: Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proc. R. Soc. A 469, 20120284 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Jin, B., Lazarov, R., Zhi, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Johnson, C., , Kienholz, D: Finite element prediction of damping in structures with constrained viscoelastic layers, 22nd Structures, Structural Dynamics and Materials Conference, Atlanta, USA, April 06-08 (1981)

  18. Karaa, S., Pani, A.: Optimal error estimates of mixed FEMs for second order hyperbolic integro-differential equations with minimal smoothness on initial data. J. Comput. Appl. Math. 275, 113–134 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Liang, H., Brunner, H.: Collocation methods for integro-differential algebraic equations with index 1. IMA J. Numer. Anal. 40, 850–885 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Lin, Y.: Semi-discrete finite element approximations for linear parabolic integro-differential equations with integrable kernels. J. Integral Equ. Appl. 10, 51–83 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Lubich, C., Sloan, I., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65, 1–17 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Mao, Z., Shen, J.: Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243–261 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    MATH  Google Scholar 

  25. Mainardi, F., Spada, G.: Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top. 193, 133–160 (2011)

    Google Scholar 

  26. McLean, W., Thomée, V.: Numerical solution of an evolution equation with a positive-type memory term. J. Austral. Math. Soc. Ser. B 35, 23–70 (1993)

    MathSciNet  MATH  Google Scholar 

  27. McLean, W., Thomée, V., Wahlbin, L.: Discretization with variable time steps of an evolution equation with a positive-type memory term. J. Comput. Appl. Math. 69, 49–69 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Meirovitch, L.: Fundamentals of Vibrations. McGraw-Hill, New York (2001)

    Google Scholar 

  29. Muñoz Rivera, J., Racke, R.: Timoshenko systems with indefinite damping. J. Math. Anal. Appl. 341, 1068–1083 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comput. 78, 1975–1995 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Nutting, P.: A new general law of deformation. J. Franklin Inst. 191, 679–685 (1921)

    Google Scholar 

  32. Pani, A., Fairweather, G.: \(H^1\) Galerkin mixed finite element methods for parabolic integro-differential equations. IMA J. Numer. Anal. 22, 231–252 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Perdikaris, P., Karniadakis, G.: Fractional-order viscoelasticity in one-dimensional blood flow models. Ann. Biomed. Eng. 42, 1012–1023 (2014)

    Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  35. Rao, S.: Vibration of continuous systems. John Wiley Sons, Hoboken (2019)

    Google Scholar 

  36. Raposo, C., Ferreira, J., Santos, M., Castro, N.: Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 18, 535–541 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  38. Sinha, R., Ewing, R., Lazarov, R.: Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data. SIAM J. Numer. Anal. 47, 3269–3292 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Soufyane, A.: Exponential stability of the linearized nonuniform Timoshenko beam. Nonlinear Anal. Real World Appl. 10, 1016–1020 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Suzuki, J., Kharazmi, E., Varghaei, P., Naghibolhosseini, M., Zayernouri, M.: Anomalous nonlinear dynamics behavior of fractional viscoelastic beams. J. Comput. Nonlinear Dyn. 16, 111005 (2021)

    Google Scholar 

  41. Suzuki, J., Zhou, Y., D’Elia, M., Zayernouri, M.: A thermodynamically consistent fractional visco-elasto-plastic model with memory-dependent damage for anomalous materials. Comput. Methods Appl. Mech. Engrg. 373, 113494 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Tatar, N.: Well-posedness and stability for a fractional thermo-viscoelastic Timoshenko problem. Comput. Appl. Math. 40, 1–34 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics, vol. 1054. Springer-Verlag, New York (1984)

  44. Trask, N., You, H., Yu, Y., Parks, M.: An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics. Comput. Methods Appl. Mech. Eng. 343, 151–165 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Webb, J.: Weakly singular Gronwall inequalities and applications to fractional differential equations. J. Math. Anal. Appl. 471, 692–711 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Xu, D.: Analytical and numerical solutions of a class of nonlinear integro-differential equations with L1 kernels. Nonlinear Anal. Real World Appl. 51, 103002 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Zhao, L., Deng, W., Hesthaven, J.: Characterization of image spaces of Riemann-Liouville fractional integral operators on Sobolev spaces \(W^{m, p} (\Omega )\). Sci. China Math. 64, 2611–2636 (2021)

    MathSciNet  MATH  Google Scholar 

  48. Zheng, X., Li, Y., Wang, H.: A viscoelastic Timoshenko beam: model development, analysis and investigation. J. Math. Phys. 63, 061509 (2022)

    MathSciNet  MATH  Google Scholar 

  49. Inconel alloy 718, Publication Number SMC-045 Copyright Special Metals Corporation, 2007, www.specialmetals.com

Download references

Acknowledgements

The authors would like to express their most sincere thanks to the referees for their very constructive and helpful comments and suggestions, which greatly improved the quality of this paper. This work was partially supported by the National Science Foundation under Grant No. DMS-2012291 and the National Natural Science Foundation of China under Grant No. 11971272. Enquiries about data availability should be directed to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangcheng Zheng.

Ethics declarations

conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, H. & Zheng, X. A viscoelastic Timoshenko Beam Model: Regularity and Numerical Approximation. J Sci Comput 95, 57 (2023). https://doi.org/10.1007/s10915-023-02187-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02187-5

Keywords

Mathematics Subject Classification

Navigation