Skip to main content
Log in

An Efficient Spectral Trust-Region Deflation Method for Multiple Solutions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

It is quite common that a nonlinear partial differential equation (PDE) admits multiple distinct solutions and each solution may carry a unique physical meaning. One typical approach for finding multiple solutions is to use the Newton method with different initial guesses that ideally fall into the basins of attraction confining the solutions. In this paper, we propose a fast and accurate numerical method for multiple solutions comprised of three ingredients: (i) a well-designed spectral-Galerkin discretization of the underlying PDE leading to a nonlinear algebraic system (NLAS) with multiple solutions; (ii) an effective deflation technique to eliminate a known (founded) solution from the other unknown solutions leading to deflated NLAS; and (iii) a viable nonlinear least-squares and trust-region (LSTR) method for solving the NLAS and the deflated NLAS to find the multiple solutions sequentially one by one. We demonstrate through ample examples of differential equations and comparison with relevant existing approaches that the spectral LSTR-Deflation method has the merits: (i) it is quite flexible in choosing initial values, even starting from the same initial guess for finding all multiple solutions; (ii) it guarantees high-order accuracy; and (iii) it is quite fast to locate multiple distinct solutions and explore new solutions which are not reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Allgower, E.L., Cruceanu, S.G., Tavener, S.: Application of numerical continuation to compute all solutions of semilinear elliptic equations. Adv. Geom. 76, 1–10 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Allgower, E.L., Sommese, A.J., Bates, D.J., Wampler, C.W.: Solution of polynomial systems derived from differential equations. Computing 76, 1–10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Breuer, B., Mckenna, P.J., Plum, M.: Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. J. Differ. Equ. 195, 243–269 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brow, K.M., Gearhart, W.B.: Deflation techniques for the calculation of further solutions of a nonlinear system. Numer. Math. 16, 334–342 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C.M., Xie, Z.Q.: Search extension method for multiple solutions of a nonlinear problem. Comput. Math. Appl. 47, 327–343 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, C.M., Xie, Z.Q.: Structure of multiple solutions for nonlinear differential equations. Sci. China. Ser. A. 47, 172–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X.J., Zhou, J.X.: A local min-max-orthogonal method for finding multiple solutions to noncooperative elliptic systems. Math. Comput. 79, 2213–2236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi, Y.S., McKenna, P.J.: A mountain pass method for the numerical solution of semilinear elliptic problems. Nonlinear Anal. 20, 417–437 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dauenhauer, E.C., Majdalani, J.: Exact self-similarity solution of the Navier–Stokes equations for a porous channel with orthogonally moving walls. Phys. Fluids 15, 1485–1495 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davis, H.T.: Introduction to Nonlinear Differential and Integral Equations. US Atomic Energy Commission, Washington (1960)

    Google Scholar 

  11. Ding, Z.H., Costa, D., Chen, G.: A high-linking algorithm for sign-changing solutions of semilinear elliptic equations. Nonlinear Anal. 38, 151–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Weinan, E., Ren, W., Vanden-Eijnden, E.: Minimum action method for the study of rare events. Commun. Pure Appl. Math. 57, 637–656 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farrell, P.E., Birkisson, A., Funke, S.W.: Deflation techniques for finding distinct solutions of nonlinear partial differential equations. SIAM J. Sci. Comput. 37, A2026–A2045 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frisch, U., Matarrese, S., Mohayaee, R., Sobolevski, A.: A reconstruction of the initial conditions of the universe by optimal mass transportation. Nature 417, 260–262 (2002)

    Article  Google Scholar 

  15. Gould, N., Sainvitu, C., Toint, P.L.: A filter-trust-region method for unconstrained optimization. SIAM J. Optim. 16, 341–357 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grau, A.A.: Rounding errors in algebraic processes (J. H. Wilkinson). SIAM Rev. 8, 397–398 (1966)

    Article  Google Scholar 

  17. Guo, B.Y., Wang, T.J.: Composite Laguerre-Legendre spectral method for exterior problems. Adv. Comput. Math. 32, 393–429 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hao, W.R., Hauenstein, J.D., Hu, B., Sommese, A.J.: A bootstrapping approach for computing multiple solutions of differential equations. J. Comput. Appl. Math. 258, 181–190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Y.X., Zhou, J.X.: A minimax method for finding multiple critical points and its applications to semilinear pdes. SIAM J. Sci. Comput. 23, 840–865 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lions, P.L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24, 441–467 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nicolis, G.: Introduction to Non-linear Science. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  22. Ouyang, T., Shi, J.: Exact multiplicity of positive solutions for a class of semilinear problem II. J. Differ. Equ. 158, 94–151 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Robinson, W.A.: The existence of multiple solutions for the laminar flow in a uniformly porous channel with suction at both walls. J. Eng. Math. 10, 23–40 (1976)

    Article  MATH  Google Scholar 

  24. Rudd, M., Tisdell, C.C.: On the solvability of two-point, second-order boundary value problems. Appl. Math. Lett. 20, 824–828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  26. Sun, W.Y., Yuan, Y.X.: Optimization Theory and Methods: Nonlinear Programming, vol. 1. Springer, Berlin (2006)

    MATH  Google Scholar 

  27. Tadmor, E.: A review of numerical methods for nonlinear partial differential equations. Bull. Am. Math. Soc. 49, 507–554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Y., Hao, W., Lin, G.: Two-level spectral methods for nonlinear elliptic equations with multiple solutions. SIAM J. Sci. Comput. 40, B1180–B1205 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Z.Q.: On a superlinear elliptic equation. Ann. Inst. Henri. Poincaé 8, 43–57 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xia, J., Pef, A., Sgpc, B.: Nonlinear bifurcation analysis of stiffener profiles via deflation techniques. Thin. Wall. Struct. 149, 1–11 (2020)

    Article  Google Scholar 

  31. Xie, Z.Q., Chen, C.M., Xu, Y.: An improved search-extension method for computing multiple solutions of semilinear PDEs. IMA J. Numer. Anal. 25, 549–576 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xie, Z.Q., Chen, C.M., Xu, Y.: An improved search-extention method for solving semilinear PDEs. Acta. Math. Sci. 26, 757–766 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xie, Z.Q., Yi, W.F., Zhou, J.X.: An augmented singular transform and its partial newton method for finding new solutions. J. Comput. Appl. Math. 286, 145–157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, H., Lin, Z.L., Liao, S.J., Wu, J.Z., Majdalani, J.: Homotopy based solutions of the Navier–Stokes equations for a porous channel with orthogonally moving walls. Phys. Fluids 22, 053601–053618 (2010)

    Article  MATH  Google Scholar 

  35. Yao, X.D., Zhou, J.X.: A minimax method for finding multiple critical points in Banach spaces and its application to quasi-linear elliptic PDEs. SIAM J. Sci. Comput. 26, 1796–1809 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yao, X.D., Zhou, J.X.: Numerical methods for computing nonlinear eigenpairs: Part I Iso-homogeneous cases. SIAM J. Sci. Comput. 29, 1355–1374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yao, X.D., Zhou, J.X.: Numerical methods for computing nonlinear eigenpairs: Part II non-Iso-homogeneous cases. SIAM J. Sci. Comput 30, 937–956 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, H., Andrew, R., Scheinberg, K.: A derivative-free algorithm for least-squares minimization. SIAM J. Optim. 20, 3555–3576 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, X.P., Zhang, J.T., Yu, B.: Eigenfunction expansion method for multiple solutions of semilinear elliptic equations with polynomial nonlinearity. SIAM J. Numer. Anal. 51, 2680–2699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou, J.X.: Instability analysis of saddle points by a local minimax method. Math. Comput. 74, 1391–1411 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The computations and the first draft were prepared by the first author. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Li-Lian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Li: This work of this author is partially supported by the Science Foundations of Hunan Province (Nos: 2020JJ5464, 20C1595).

L-L. Wang: The research of this author is partially supported by Singapore MOE AcRF Tier 1 Grant: RG15/21.

L. Li would like to thank the hospitality of Nanyang Technological University for the visit to finalize this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, LL. & Li, H. An Efficient Spectral Trust-Region Deflation Method for Multiple Solutions. J Sci Comput 95, 32 (2023). https://doi.org/10.1007/s10915-023-02154-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02154-0

Keywords

Mathematics Subject Classification

Navigation