Skip to main content
Log in

Large-Scale Bayesian Optimal Experimental Design with Derivative-Informed Projected Neural Network

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We address the solution of large-scale Bayesian optimal experimental design (OED) problems governed by partial differential equations (PDEs) with infinite-dimensional parameter fields. The OED problem seeks to find sensor locations that maximize the expected information gain (EIG) in the solution of the underlying Bayesian inverse problem. Computation of the EIG is usually prohibitive for PDE-based OED problems. To make the evaluation of the EIG tractable, we approximate the (PDE-based) parameter-to-observable map with a derivative-informed projected neural network (DIPNet) surrogate, which exploits the geometry, smoothness, and intrinsic low-dimensionality of the map using a small and dimension-independent number of PDE solves. The surrogate is then deployed within a greedy algorithm-based solution of the OED problem such that no further PDE solves are required. We analyze the EIG approximation error in terms of the generalization error of the DIPNet and show they are of the same order. Finally, the efficiency and accuracy of the method are demonstrated via numerical experiments on OED problems governed by inverse scattering and inverse reactive transport with up to 16,641 uncertain parameters and 100 experimental design variables, where we observe up to three orders of magnitude speedup relative to a reference double loop Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Uciński, D.: Optimal Measurement Methods for Distributed Parameter System Identification. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  2. Loose, N., Heimbach, P.: Leveraging uncertainty quantification to design ocean climate observing systems. J. Adv. Model. Earth Syst., pp 1–29 (2021)

  3. Ferrolino, A.R., Lope, J.E.C., Mendoza, R.G.: Optimal location of sensors for early detection of tsunami waves. In: International Conference on Computational Science, pp. 562–575 (2020). Springer

  4. Huan, X., Marzouk, Y.M.: Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys. 232(1), 288–317 (2013). https://doi.org/10.1016/j.jcp.2012.08.013

    Article  MathSciNet  Google Scholar 

  5. Huan, X., Marzouk, Y.M.: Gradient-based stochastic optimization methods in Bayesian experimental design. Int. J. Uncertain. Quantif. 4(6), 479–510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huan, X., Marzouk, Y.M.: Sequential bayesian optimal experimental design via approximate dynamic programming. arXiv preprint arXiv:1604.08320 (2016)

  7. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: A fast and scalable method for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse problems. SIAM J. Sci. Comput. 38(1), 243–272 (2016). https://doi.org/10.1137/140992564

    Article  MathSciNet  MATH  Google Scholar 

  8. Beck, J., Dia, B.M., Espath, L.F., Long, Q., Tempone, R.: Fast bayesian experimental design: Laplace-based importance sampling for the expected information gain. Comput. Methods Appl. Mech. Eng. 334, 523–553 (2018). https://doi.org/10.1016/j.cma.2018.01.053

    Article  MathSciNet  MATH  Google Scholar 

  9. Long, Q., Scavino, M., Tempone, R., Wang, S.: Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations. Comput. Methods Appl. Mech. Eng. 259, 24–39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Long, Q., Motamed, M., Tempone, R.: Fast bayesian optimal experimental design for seismic source inversion. Comput. Methods Appl. Mech. Eng. 291, 123–145 (2015). https://doi.org/10.1016/j.cma.2015.03.021

    Article  MathSciNet  MATH  Google Scholar 

  11. Beck, J., Mansour Dia, B., Espath, L., Tempone, R.: Multilevel double loop Monte Carlo and stochastic collocation methods with importance sampling for Bayesian optimal experimental design. Int. J. Numer. Methods Eng. 121(15), 3482–3503 (2020)

    Article  MathSciNet  Google Scholar 

  12. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: A-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems with regularized \(\ell _0\)-sparsification. SIAM J. Sci. Comput. 36(5), 2122–2148 (2014). https://doi.org/10.1137/130933381

    Article  MathSciNet  MATH  Google Scholar 

  13. Alexanderian, A., Gloor, P.J., Ghattas, O.: On Bayesian A-and D-optimal experimental designs in infinite dimensions. Bayesian Anal. 11(3), 671–695 (2016). https://doi.org/10.1214/15-BA969

    Article  MathSciNet  MATH  Google Scholar 

  14. Saibaba, A.K., Alexanderian, A., Ipsen, I.C.: Randomized matrix-free trace and log-determinant estimators. Numerische Mathematik 137(2), 353–395 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Crestel, B., Alexanderian, A., Stadler, G., Ghattas, O.: A-optimal encoding weights for nonlinear inverse problems, with application to the Helmholtz inverse problem. Inverse Prob. 33(7), 074008 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Attia, A., Alexanderian, A., Saibaba, A.K.: Goal-oriented optimal design of experiments for large-scale Bayesian linear inverse problems. Inverse Prob. 34(9), 095009 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, K., Chen, P., Ghattas, O.: A fast and scalable computational framework for large-scale and high-dimensional Bayesian optimal experimental design. arXiv preprint arXiv:2010.15196, to appear in SIAM Journal on Scientific Computing (2020)

  18. Wu, K., Chen, P., Ghattas, O.: An efficient method for goal-oriented linear bayesian optimal experimental design: Application to optimal sensor placement. arXiv preprint arXiv:2102.06627, to appear in SIAM/AMS Journal on Uncertainty Quantification (2021)

  19. Aretz-Nellesen, N., Chen, P., Grepl, M.A., Veroy, K.: A-optimal experimental design for hyper-parameterized linear Bayesian inverse problems. Numer. Math. Adv. Appl. ENUMATH 2020 (2020)

  20. Aretz, N., Chen, P., Veroy, K.: Sensor selection for hyper-parameterized linear Bayesian inverse problems. PAMM 20(S1), 202000357 (2021)

    Article  MATH  Google Scholar 

  21. Foster, A., Jankowiak, M., Bingham, E., Horsfall, P., Teh, Y.W., Rainforth, T., Goodman, N.: Variational Bayesian optimal experimental design. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 14036–14047. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/d55cbf210f175f4a37916eafe6c04f0d-Paper.pdf

  22. Kleinegesse, S., Gutmann, M.U.: Bayesian experimental design for implicit models by mutual information neural estimation. In: International Conference on Machine Learning, pp. 5316–5326 (2020). PMLR

  23. Shen, W., Huan, X.: Bayesian sequential optimal experimental design for nonlinear models using policy gradient reinforcement learning. arXiv preprint arXiv:2110.15335 (2021)

  24. O’Leary-Roseberry, T., Villa, U., Chen, P., Ghattas, O.: Derivative-informed projected neural networks for high-dimensional parametric maps governed by pdes. Comput. Methods Appl. Mech. Eng. 388, 114199 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. O’Leary-Roseberry, T.: Efficient and dimension independent methods for neural network surrogate construction and training. PhD thesis, The University of Texas at Austin (2020)

  26. O’Leary-Roseberry, T., Du, X., Chaudhuri, A., Martins, J.R., Willcox, K., Ghattas, O.: Adaptive projected residual networks for learning parametric maps from sparse data. arXiv preprint arXiv:2112.07096 (2021)

  27. Flath, P.H., Wilcox, L.C., Akçelik, V., Hill, J., van Bloemen Waanders, B., Ghattas, O.: Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations. SIAM J. Sci. Comput. 33(1), 407–432 (2011). https://doi.org/10.1137/090780717

    Article  MathSciNet  MATH  Google Scholar 

  28. Bui-Thanh, T., Burstedde, C., Ghattas, O., Martin, J., Stadler, G., Wilcox, L.C.: Extreme-scale UQ for Bayesian inverse problems governed by PDEs. In: SC12: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2012)

  29. Bui-Thanh, T., Ghattas, O., Martin, J., Stadler, G.: A computational framework for infinite-dimensional Bayesian inverse problems Part I: The linearized case, with application to global seismic inversion. SIAM J. Sci. Comput. 35(6), 2494–2523 (2013). https://doi.org/10.1137/12089586X

    Article  MathSciNet  MATH  Google Scholar 

  30. Bui-Thanh, T., Ghattas, O.: An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation. SIAM/ASA J. Uncertain. Quantif. 2(1), 203–222 (2014). https://doi.org/10.1137/120894877

    Article  MathSciNet  MATH  Google Scholar 

  31. Kalmikov, A.G., Heimbach, P.: A Hessian-based method for uncertainty quantification in global ocean state estimation. SIAM J. Sci. Comput. 36(5), 267–295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hesse, M., Stadler, G.: Joint inversion in coupled quasistatic poroelasticity. J. Geophys. Res. Solid Earth 119(2), 1425–1445 (2014)

    Article  Google Scholar 

  33. Isaac, T., Petra, N., Stadler, G., Ghattas, O.: Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet. J. Comput. Phys. 296, 348–368 (2015). https://doi.org/10.1016/j.jcp.2015.04.047

    Article  MathSciNet  MATH  Google Scholar 

  34. Cui, T., Law, K.J.H., Marzouk, Y.M.: Dimension-independent likelihood-informed MCMC. J. Comput. Phys. 304, 109–137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, P., Villa, U., Ghattas, O.: Hessian-based adaptive sparse quadrature for infinite-dimensional Bayesian inverse problems. Comput. Methods Appl. Mech. Eng. 327, 147–172 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Beskos, A., Girolami, M., Lan, S., Farrell, P.E., Stuart, A.M.: Geometric MCMC for infinite-dimensional inverse problems. J. Comput. Phys. 335, 327–351 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zahm, O., Cui, T., Law, K., Spantini, A., Marzouk, Y.: Certified dimension reduction in nonlinear Bayesian inverse problems. arXiv preprint arXiv:1807.03712 (2018)

  38. Brennan, M., Bigoni, D., Zahm, O., Spantini, A., Marzouk, Y.: Greedy inference with structure-exploiting lazy maps. Adv. Neural Inf. Process. Syst. 33 (2020)

  39. Chen, P., Wu, K., Chen, J., O’Leary-Roseberry, T., Ghattas, O.: Projected Stein variational Newton: A fast and scalable Bayesian inference method in high dimensions. Adv. Neural Inf. Process, Syst (2019)

    Google Scholar 

  40. Chen, P., Ghattas, O.: Projected Stein variational gradient descent. Adv. Neural Inf. Process, Syst (2020)

    Google Scholar 

  41. Subramanian, S., Scheufele, K., Mehl, M., Biros, G.: Where did the tumor start? An inverse solver with sparse localization for tumor growth models. Inverse Prob. 36(4), 045006 (2020). https://doi.org/10.1088/1361-6420/ab649c

    Article  MathSciNet  MATH  Google Scholar 

  42. Babaniyi, O., Nicholson, R., Villa, U., Petra, N.: Inferring the basal sliding coefficient field for the Stokes ice sheet model under rheological uncertainty. Cryosphere 15(4), 1731–1750 (2021)

    Article  Google Scholar 

  43. Ghattas, O., Willcox, K.: Learning physics-based models from data: perspectives from inverse problems and model reduction. Acta Numer. 30, 445–554 (2021). https://doi.org/10.1017/S0962492921000064

    Article  MathSciNet  Google Scholar 

  44. Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta Numer. 19, 451–559 (2010). https://doi.org/10.1017/S0962492910000061

    Article  MathSciNet  MATH  Google Scholar 

  45. Petra, N., Martin, J., Stadler, G., Ghattas, O.: A computational framework for infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to ice sheet flow inverse problems. SIAM J. Sci. Comput. 36(4), 1525–1555 (2014)

  46. Bhattacharya, K., Hosseini, B., Kovachki, N.B., Stuart, A.M.: Model reduction and neural networks for parametric pdes. arXiv preprint arXiv:2005.03180 (2020)

  47. Fresca, S., Manzoni, A.: POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized pdes by proper orthogonal decomposition. Comput. Methods Appl. Mech. Eng. 388, 114181 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., Anandkumar, A.: Neural operator: Learning maps between function spaces. arXiv preprint arXiv:2108.08481 (2021)

  49. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.: Neural operator: Graph kernel network for partial differential equations. arXiv preprint arXiv:2003.03485 (2020)

  50. Lu, L., Jin, P., Karniadakis, G.E.: Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193 (2019)

  51. O’Leary-Roseberry, T., Chen, P., Villa, U., Ghattas, O.: Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning. arXiv preprint arXiv:2206.10745 (2022)

  52. Nelsen, N.H., Stuart, A.M.: The random feature model for input-output maps between banach spaces. SIAM J. Sci. Comput. 43(5), 3212–3243 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  53. Nguyen, H.V., Bui-Thanh, T.: Model-constrained deep learning approaches for inverse problems. arXiv preprint arXiv:2105.12033 (2021)

  54. Zahm, O., Constantine, P.G., Prieur, C., Marzouk, Y.M.: Gradient-based dimension reduction of multivariate vector-valued functions. SIAM J. Sci. Comput. 42(1), 534–558 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Manzoni, A., Negri, F., Quarteroni, A.: Dimensionality reduction of parameter-dependent problems through proper orthogonal decomposition. Ann. Math. Sci. Appl. 1(2), 341–377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction vol. 92. Springer (2015)

  57. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)

    Article  Google Scholar 

  58. Li, Q., Lin, T., Shen, Z.: Deep learning via dynamical systems: An approximation perspective. J. Eur, Math, Soc. (2022)

  59. O’Leary-Roseberry, T., Alger, N., Ghattas, O.: Low rank saddle free Newton: A scalable method for stochastic nonconvex optimization. arXiv preprint arXiv:2002.02881 (2020)

  60. Jagalur-Mohan, J., Marzouk, Y.: Batch greedy maximization of non-submodular functions: guarantees and applications to experimental design. J. Mach. Learn. Res. 22(252), 1–62 (2021)

    MathSciNet  MATH  Google Scholar 

  61. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Archive of Numerical Software 3(100) (2015). https://doi.org/10.11588/ans.2015.100.20553

  62. O’Leary-Roseberry, T., Villa, U.: hippyflow: Dimension reduced surrogate construction for parametric PDE maps in Python (2021). https://doi.org/10.5281/zenodo.4608729

  63. Villa, U., Petra, N., Ghattas, O.: hIPPYlib: An extensible software framework for large-scale inverse problems governed by PDEs; Part I: Deterministic inversion and linearized Bayesian inference. ACM Trans, Math, Softw. (2021)

  64. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)

  65. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  66. O’Leary-Roseberry, T., Alger, N., Ghattas, O.: Inexact Newton methods for stochastic nonconvex optimization with applications to neural network training. arXiv preprint arXiv:1905.06738 (2019)

Download references

Funding

This research was partially funded by DOE ASCR DE-SC0019303 and DE-SC0021239, DOD MURI FA9550-21-1-0084, and NSF DMS-2012453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyi Wu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., O’Leary-Roseberry, T., Chen, P. et al. Large-Scale Bayesian Optimal Experimental Design with Derivative-Informed Projected Neural Network. J Sci Comput 95, 30 (2023). https://doi.org/10.1007/s10915-023-02145-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02145-1

Keywords

Navigation