Skip to main content
Log in

Taylor-Hood Like Finite Elements for Nearly Incompressible Strain Gradient Elasticity Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a family of mixed finite elements that are robust for the nearly incompressible strain gradient model, which is a fourth-order singular perturbed elliptic system. The element is similar to [C. Taylor and P. Hood, Comput. & Fluids, 1(1973), 73–100] in the Stokes flow. Using a uniform discrete B-B inequality for the mixed finite element pairs, we show the optimal rate of convergence that is robust in the incompressible limit. By a new regularity result that is uniform in both the materials parameter and the incompressibility, we prove the method converges with 1/2 order to the solution with strong boundary layer effects. Moreover, we estimate the convergence rate of the numerical solution to the unperturbed second-order elliptic system. Numerical results for both smooth solutions and the solutions with sharp layers confirm the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availibility

Enquiries about data availability should be directed to the authors.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press (2003)

  2. Agmon, S., Douglis, L., Nirenberg, A.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17, 35–92 (1964)

    MathSciNet  MATH  Google Scholar 

  3. Aifantis, E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)

    Google Scholar 

  4. Altan, S.B., Aifantis, E.C.: On the structure of the mode III crack-tip in gradient elasticity. Scripta. Metal. Mater. 26, 319–324 (1992)

    Google Scholar 

  5. Amanatidou, E., Aravas, N.: Mixed finite element formulations of strain-gradient elasticity problems. Comput. Methods Appl. Mech. Engrg. 191, 1723–1751 (2002)

    MATH  Google Scholar 

  6. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the stokes equations. Calcolo 21, 337–344 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Askes, H., Aifantis, E.C.: Numerical modeling of size effects with gradient elasticity-Formulation, meshless discretization and examples. Int. J. Fract. 117, 347–358 (2002)

    Google Scholar 

  8. Auricchio, F., Beirão da Veiga, L., Lovadina, C., Reali, A., Taylor, R.L., Wriggers, P.: Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput. Mech. 52, 1153–1167 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Babuška, I., Suri, M.: Locking effects in the finite element approximation of elasticity problems. Numer. Math. 62, 439–463 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Bacuta, C., Bramble, J.H.: Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains. Z. Angew. Math. Phys. 54, 874–878 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Bernardi, C., Geneviève, R.: Analysis of some finite elements for the stokes problems. Math. Comp. 44(169), 71–79 (1985)

    MathSciNet  MATH  Google Scholar 

  12. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, 2nd edn. Springer-Verlag, Berlin Heidelberg (2013)

    MATH  Google Scholar 

  13. Bogner, F.A., Fox, R.L., Schmit, L.A.: The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas. In: Proceedings of the Conferences on the Matrix Methods in Structural Mechanics. Wright Patterson A.F.B. Ohio (1965)

  14. Braess, D.: Stability of saddle-point problems with penalty. RAIRO Anal. Numér. 30, 731–742 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Braess, D., Ming, P.B.: A finite element method for nearly incompressible elasticity problems. Math. Comp. 74, 25–52 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Brenner, S.C., Gudi, T., Neilan, M., Sung, L.Y.: C\(^{\,0}\) penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comp. 80, 1979–1995 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Brenner, S.C., Neilan, M.: A C\(^{\,0}\) interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49, 869–892 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer Science \(+\) Buiness Media LLC (2008)

  19. Brenner, S.C., Sung, L.Y.: Linear finite element methods for planar linear elasticity. Math. Comp. 59, 321–338 (1992)

    MathSciNet  MATH  Google Scholar 

  20. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  21. Ciarlet, P.G., Raviart, P.A.: General Lagrange and Hermite interpolation in R\(^n\) with applications to finite element methods. Arch. Rational Mech. Anal. 46, 177–199 (1972)

    MathSciNet  MATH  Google Scholar 

  22. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1975)

    MathSciNet  MATH  Google Scholar 

  23. Costabel, M., McIntosh, A.: On Bogovskiǐ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265(2), 297–320 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Danchin, R., Mucha, P.B.: Divergence. Discret. Contin. Dyn. Syst. Ser. S 6, 1163–1172 (2013)

    MATH  Google Scholar 

  25. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables, 2nd edn. Cambridge University Press, Encyclopedia of Mathematics and its Applications (2014)

    MATH  Google Scholar 

  26. Engel, G., Garikipati, K., Hughes, T.J.R., Larsson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Engrg. 191, 3669–3750 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Feng, X.B., Neilan, M.: Convergence of a fourth-order singular perturbation of the \(n\)-dimensional radially symmetric Monge-Ampère equation. Appl. Anal. 93, 1626–1646 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Fischer, P.: C\(^{\,1}\) Continuous Methods in Computational Gradient Elasticity (2011). Der Technischen Fakultät der Universität Erlangen-Nürnberg

  29. Fischer, P., Klassen, M., Mergheim, J., Steinmann, P., Müller, R.: Isogeometric analysis of 2D gradient elasticity. Comput. Mech. 47, 325–334 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Fischer, P., Mergheim, J., Steinmann, P.: On the C\(^1\) continuous discretization of non-linear gradient elasticity: a comparison of NEM and FEM based on Bernstein-Bézier patches. Int. J. Numer. Meth. Eng. 82, 1282–1307 (2010)

    MATH  Google Scholar 

  31. Fleck, N.A., Hutchinson, J.W.: Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J. Mech. Phys. Solids. 45(8), 1253–73 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Fortin, M.: An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11, 341–354 (1977)

    MathSciNet  MATH  Google Scholar 

  33. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. Springer Science+Business Media, LLC (2011)

    MATH  Google Scholar 

  34. Guzmán, J., Leykekhman, D., Neilan, M.: A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem. Calcolo 49, 95–125 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Hermann, L.R.: Elasticity equations for incompressible and nearly incompressible materials by a variational theorem. AIAA J. 3, 1896–1900 (1965)

    MathSciNet  Google Scholar 

  36. Hlaváček, I., Hlaváček, M.: On the existence and uniqueness of solution and some variational principles in linear theories of elasticity with couple-stresses. II: Mindlin’s elasticity with microstructure and the first strain-gradient theory. Apl. Mat. 14, 411–427 (1969)

    MathSciNet  MATH  Google Scholar 

  37. John, F.: The transition from thin plate to membrane in the case of a plate under uniform tension. In: Continuum mechanics and related problems of analysis, Izdat. “Nauka”, Moscow, pp. 193–201 (1972)

  38. Khakalo, S., Niiranen, J.: Anisotropic strain gradient thermoelasticity for cellular structures: plate models, homogenization and isogeometric analysis. J. Mech. Phys. Solids 134, 103728 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Koiter, W.T.: Couple-stresses in the theory of elasticity I. Nederl. Akad. Wetensch. Proc. Ser. B 67, 17–29 (1964)

    MathSciNet  MATH  Google Scholar 

  40. Korn, A.: Solution générale du problème d’équilibre dans la théorie de l’élasticité dans le cas où les efforts sont donnés à la surface. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2) 10, 165–269 (1908)

  41. Korn, A.: Über einige ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Intern. Cracov. Akad. Umiejetnosci (Classe Sci. Math. Nat.) pp. 706–724 (1909)

  42. Laurencot, P., Walker, C.: Some singular equations modeling MEMS. Bull. Amer. Math. Soc. 54, 437–479 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Li, H.L., Ming, P.B., Shi, Z.C.: Two robust nonconforming H\(^2-\)elements for linear strain gradient elasticity. Numer. Math. 137, 691–711 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Li, H.L., Ming, P.B., Wang, H.Y.: H\(^2-\)Korn’s inequality and the nonconforming elements for the strain gradient elastic model. J. Sci. Comput. 88, 78–100 (2021). https://doi.org/10.1007/s10915-021-01597-7

  45. Liao, Y.L., Ming, P.B.: A family of nonconforming rectangular elements for strain gradient elasticity. Adv. Appl. Math. Mech. 11(6), 1263–1286 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Mardal, K.A., Schöberl, J., Winther, R.: A uniformly stable Fortin operator for the Taylor-Hood element. Numer. Math. 123, 537–551 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Mardal, K.A., Tai, X.C., Winther, R.: A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40, 1605–1631 (2002)

    MathSciNet  MATH  Google Scholar 

  48. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Rational Mech. Anal. 16, 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  49. Niiranen, J., Khakalo, S., Balobanov, V., Niemi, A.H.: Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems. Comput. Methods Appl. Mech. Eng. 308, 182–211 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Nilssen, T.K., Tai, X.C., Winther, R.: A robust nonconforming H\(^2\)-element. Math. Comp. 70, 489–505 (2001)

    MathSciNet  MATH  Google Scholar 

  51. Papanicolopulos, S.A., Zervos, A., Vardoulakis, I.: A three-dimensional C\(^{\,1}\) finite element for gradient elasticity. Int. J. Numer. Meth. Eng. 135, 1396–1415 (2009)

    MathSciNet  MATH  Google Scholar 

  52. Phunpeng, V., Baiz, P.M.: Mixed finite element formulations for strain-gradient elasticity problems using the FEniCS environment. Finite Elem. Anal. Des. 96, 23–40 (2015)

    MathSciNet  Google Scholar 

  53. Rudraraju, S., Van der Ven, A., Garikipati, K.: Three-dimensional isogeometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains. Comput. Methods Appl. Mech. Eng. 278, 705–728 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Schuss, Z.: Singular perturbations and the transition from thin plate to membrane. Proc. Amer. Math. Soc. 58, 139–147 (1976)

    MathSciNet  MATH  Google Scholar 

  55. Semper, B.: Conforming finite element approximations for a fourth-order singular perturbation problem. SIAM J. Numer. Anal. 29, 1043–1058 (1992)

    MathSciNet  MATH  Google Scholar 

  56. Semper, B.: Locking in finite-element approximations to long thin extensible beams. IMA J. Numer. Anal. 14, 97–109 (1994)

    MathSciNet  MATH  Google Scholar 

  57. Shu, J.Y., King, W.E., Fleck, N.A.: Finite elements for materials with strain gradient effects. Intern. J. Numer. Meth. Eng. 44, 373–391 (1999)

    MATH  Google Scholar 

  58. Simo, J., Taylor, R.L., Pister, K.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)

    MathSciNet  MATH  Google Scholar 

  59. Szegö, G.: Orthogonal Polynomials, 4th edn. AMS, Providence, Rhode Island,: AMS Coll. Publ. Vol, XXIII (1975)

  60. Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

    MathSciNet  MATH  Google Scholar 

  61. Tian, S.D.: New nonconforming finite element methods for fourth order elliptic problems . Ph.D. Thesis, Peking University (2021)

  62. Vogelius, M.: An analysis of the p-version of the finite element method for nearly incompressible materials uniformly valid, optimal error estimates. Numer. Math. 41, 39–53 (1983)

    MathSciNet  MATH  Google Scholar 

  63. Wang, M., Zu, P.H., Zhang, S.: High accuracy nonconforming finite elements for fourth order problems. Sci. China Math. 55(10), 2183–2192 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Wei, Y.G.: A new finite element method for strain gradient theories and applications to fracture analyses. Eur. J. Mech. A Solids 25, 897–913 (2006)

    MathSciNet  MATH  Google Scholar 

  65. Wihler, T.P.: Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comp. 75, 1087–1102 (2006)

    MathSciNet  MATH  Google Scholar 

  66. Zervos, A., Papanicolopulos, S.A., Vardoulakis, I.: Two finite element discretizations for gradient elasticity. J. Eng. Mech. Asce. 135, 203–213 (2009)

    MATH  Google Scholar 

  67. Zybell, L., Mühlich, U., Kuna, M., Zhang, Z.L.: A three-dimensional finite element for gradient elasticity based on mixed-type formulation. Comput. Mater. Sci. 52, 268–273 (2012)

    Google Scholar 

Download references

Funding

The work of Liao and Ming were supported by National Natural Science Foundation of China through Grant No. 11971467. The work of Xu was supported by National Natural Science Foundation of China through Grant No. 11772067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingbing Ming.

Ethics declarations

Conflicts of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Ming, P. & Xu, Y. Taylor-Hood Like Finite Elements for Nearly Incompressible Strain Gradient Elasticity Problems. J Sci Comput 95, 4 (2023). https://doi.org/10.1007/s10915-023-02135-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02135-3

Keywords

Mathematics Subject Classification

Navigation