Skip to main content
Log in

A Posteriori Error Analysis for Pressure-Robust HDG Methods for the Stationary Incompressible Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A hybridizable discontinuous Galerkin method with divergence-free and H(div)-conforming velocity field is considered in this paper for the stationary incompressible Navier–Stokes equations. The pressure-robustness, which means that a priori error estimates for the velocity is independent of the pressure error, is satisfied. As a consequence, an efficient and reliable a posteriori error estimator is proved for the \(L^2\)-errors in the velocity gradient and pressure under a smallness assumption. We conclude by several numerical examples which reveal the pressure-robustness and show the performance of the obtained a posteriori error estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Hood, P., Taylor, C.: Navier-Stokes equations using mixed interpolation. Finite element methods in flow problems, pp. 121-132. University of Alabama, Tuscaloosa (1974)

  2. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Fr. Autom. Inf. Rech. Opér. Math. 7, 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)

    MathSciNet  MATH  Google Scholar 

  4. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constrait in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268, 782–800 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74(251), 1067–1095 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, Springer series in computational mathematics, vol. 44. Springer, Berlin (2013)

    MATH  Google Scholar 

  8. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. SIAM J. Numer. Anal. 45(4), 1742–1776 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hyrbidization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Nuemr. Anal. 47(2), 1319–1365 (2009)

    MATH  Google Scholar 

  10. Fu, G., Qiu, W., Zhang, W.: An analysis of HDG methods for convection-dominated diffusion problems. MSAIM: M2AN 49, 225–256 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Leng, H., Chen, Y.: Adaptive hybridizable discontinuous Galerkin methods for nonstationary convection diffusion problem. Adv. Comput. Math. 46, 50 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47, 1092–1125 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.-J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80, 723–760 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Du, S.: HDG methods for Stokes equation based on strong symmetric stress formulations. J. Sci. Comput. 8, 85 (2020)

    MathSciNet  Google Scholar 

  15. Leng, H., Chen, Y.: Residual-type a posteriori error analysis of HDG methods for Neumann boundary control problems. Adv. Comput. Math. 47, 30 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Leng, H., Chen, H.: Adaptive HDG methods for the Brinkman equations with application to optimal control. J. Sci. Comput. 87, 46 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Sayas, F.-J.: Divergence-conforming HDG methods for Stokes flows. Math. Comput. 83, 1571–1598 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations. Math. Comput. 86, 1643 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Nguyen, N.C., Peraire, J., Cockburn, B.: An implict high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Lehrenfeld, C., Schöberl, J.: High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307, 339–361 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Lehrenfeld, C., Hybrid discontinuous Galerkin methods for solving incompressible flow problems, Rheinisch-Westfalischen Technischen Hochschule Aachen (2010)

  22. Lederer, P.L., Lehrenfeld, C., Schöberl, J.: Hybrid discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part I. SIAM J. Numer. Anal. 56, 2070–2094 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Kirk, K.L.A., Rhebergen, S.: Analysis of a pressure-robust hybridized discontinuous Galerkin method for the Stationary Navier-Stokes equations. J. Sci. Comput. 81, 881–897 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Rhebergen, S., Wells, G.N.: Analysis of a hybridized/interface stabilized finite element method for the Stokes equations. SIAM J. Numer. Anal. 55(4), 1982–2003 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Rhebergen, S., Wells, G.N.: A hybridizable discontinuous Galerkin method for the Navier–Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76(3), 1484–1501 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Rhebergen, S., Wells, G.N.: An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations. Comput. Methods Appl. Mech. Engrg. 358, 112619 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Cockburn, B., Zhang, W.: A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51(1), 676–693 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection diffusion equations. IMA J. Numer. Anal. 36, 437–462 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Araya, R., Solano, M., Vega, P.: Analysis of an adaptive HDG method for the Brinkman problem. IMA J. Numer. Anal. 39, 1502–1528 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of an HDG method for the Brinkman problem. Comput. Math. Appl. 75, 1191–1212 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Leng, H.: Adaptive HDG methods for the steady-state incompressible Navier-Stokes equations. J. Sci. Comput. 87, 37 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Teman, R.: Navier-Stokes equations, 3rd edn. Elsevier Science Publishers B. V, Amsterdam (1984)

    MATH  Google Scholar 

  33. Cockburn, B., Guzmán, J., Soon, S.-C., Stokarski, H.K.: An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems. SIAM J. Numer. Anal. 47(4), 2686–2707 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Lederer, P.L., Rhebergen, S.: A pressure-robust embedded discontinuous Galerkin method for the Stokes problem by reconstruction operators. SIAM J. Numer. Anal. 58(5), 2915–2933 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16, 47–75 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Larson, M.G., Møalqvist, A.: A posteriori error estimate for mixed finite element approximations of elliptic problems. Numer. Math. 108, 487–500 (2008)

    MathSciNet  Google Scholar 

  39. Clement, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9, 77–84 (1975)

    MathSciNet  MATH  Google Scholar 

  40. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer-Verlag, New York (2008)

    MATH  Google Scholar 

  41. Rhebergen, S., Wells, G.N.: Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations. J. Sci. Comput. 77, 1936–1952 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Galdi, G.P.: An introduce to the mathematical theory of the Navier-Stokes equations: steady-state problems. Springer, New York (2011)

    MATH  Google Scholar 

  44. Łukaszewicz, G., Kalita, P.: Navier-Stokes equations: an introduction with applications. Springer, Switzerland (2016)

    MATH  Google Scholar 

  45. Verfürth, R.: Robust a posteriori error estimates for stationary convection diffusion equations. SIAM J. Numer. Anal. 43, 1766–1782 (2005)

    MathSciNet  MATH  Google Scholar 

  46. Lederer, P.L., Linke, A., Merdon, C., Schöberl, J.: Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements. SIAM J. Numer. Anal. 55, 1291–1314 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Kovasznay, L.: Laminar flow behind a two-dimensional grid. Pro. Camb. Philos. Soc. 44, 58–62 (1948)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work was supported by the NSF of China (Grant No. 12001209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Leng.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, H. A Posteriori Error Analysis for Pressure-Robust HDG Methods for the Stationary Incompressible Navier–Stokes Equations. J Sci Comput 94, 52 (2023). https://doi.org/10.1007/s10915-023-02104-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02104-w

Keywords

Mathematics Subject Classification

Navigation