Skip to main content
Log in

A Fictitious Domain Spectral Method for Solving the Helmholtz Equation in Exterior Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We extend the fictitious domain spectral method presented in Gu and Shen (SIAM J Sci Comput 43:A309–A329, 2021) for elliptic PDEs in bounded domains to the Helmhotlz equation in exterior domains. We first reduce the problem in an exterior domain to a bounded domain using the exact Dirichlet-to-Neumann operator. Next, we formulate the reduced problem into an equivalent problem in an annulus by using a fictitious domain approach. Then, we apply the Fourier-spectral method in the radial direction to reduce the problem in an annulus to a sequence of 1-D Bessel-type equations, each with a one-sided open boundary condition that are to be determined by the boundary condition of the original Helmholtz equation. We solve these 1-D Bessel-type equations by the Legendre-spectral method, and determine the open boundary conditions with a least square approach. We derive a wave number explicit error estimate for the special case of a circular obstacle, and provide ample numerical results to show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

No data is used and generated in this manuscript.

References

  1. Babuska, I.M., Sauter, S.A.: Is the pollution effect of the fem avoidable for the helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392–2423 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bremer, J.: A fast direct solver for the integral equations of scattering theory on planar curves with corners. J. Comput. Phys. 231, 1879–1899 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruno, O.P., Reitich, F.: Solution of a boundary value problem for the Helmholtz equation via variation of the boundary into the complex domain. Proc. R. Soc. Edinburgh Sect. A Math. 122, 317–340 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruno, O.P., Lyon, M.: High-order unconditionally stable FC-AD solvers for general smooth domains: I: basic elements. J. Comput. Phys. 229(6), 2009–2033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruno, O.P., Paul, J.: Two-dimensional Fourier continuation and applications. SIAM J. Sci. Comput. 44(2), A964–A992 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burman, E., Haijun, W., Zhu, L.: Linear continuous interior penalty finite element method for Helmholtz equation with high wave number: one-dimensional analysis. Numer. Methods Partial Differ. Equ. 32(5), 1378–1410 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chandler-Wilde, S.N., Langdon, S.: A Galerkin boundary element method for high frequency scattering by convex polygons. SIAM J. Numer. Anal. 45, 610–640 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciskowski, R.D., Brebbia, C.A.: Boundary Element Methods in Acoustics. Springer, Berlin (1991)

    MATH  Google Scholar 

  10. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  11. Du, Y., Zhang, Z.: A numerical analysis of the weak Galerkin method for the Helmholtz equation with high wave number. Commun. Comput. Phys. 22(1), 133–156 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang, Q., Nicholls, D., Shen, J.: A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering. J. Comput. Phys. 224(2), 1145–1169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng, X., Haijun, W.: \(hp\)-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comp. 80(276), 1997–2024 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gerdes, K., Demkowicz, L.: Solution of 3D-Laplace and Helmholtz equations in exterior domains using \(hp\)-infinite elements. Comput. Methods Appl. Mech. Eng. 137, 239–273 (1996)

    Article  MATH  Google Scholar 

  15. Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU Press, Baltimore (2013)

    Book  MATH  Google Scholar 

  16. Gu, Y., Shen, J.: An efficient spectral method for elliptic PDEs in complex domains with circular embedding. SIAM J. Sci. Comput. 43, A309–A329 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, B.-Y., Wang, L.-L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hong, Y., Nicholls, D.: A rigorous numerical analysis of the transformed field expansion method for diffraction by periodic, layered structures. SIAM J. Numer. Anal. 59(1), 456–476 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ihlenburg, F.: Finite element analysis of acoustic scattering. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  20. Langdon, S., Chandler-Wilde, S.N.: A wavenumber independent boundary element method for an acoustic scattering problem. SIAM J. Numer. Anal. 43, 2450–2477 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, L., Shen, J., Wang, L.-L., Yang, Z.: Wavenumber explicit analysis for time-harmonic Maxwell equations in a spherical shell and spectral approximations. IMA J. Numer. Anal. 38(2), 810–851 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maue, A.-W.: Zur Formulierung eines allgemeinen Beugungs-problems durch eine Integralgleichung. Z. Phys. 126, 601–618 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  23. Milder, D.M.: Improved formalism for rough-surface scattering of acoustic and electromagnetic waves. Wave Propag. Scatter. Varied Media II(1558), 213–221 (1991)

    Article  Google Scholar 

  24. Monk, P., et al.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  25. Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  26. Nicholls, D., Shen, J.: A stable, high-order method for two-dimensional bounded-obstacle scattering. SIAM J. Sci. Comput. 28, 1398–1419 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nicholls, D., Shen, J.: A rigorous numerical analysis of the transformed field expansion method. SIAM J. Numer. Anal. 47(4), 2708–2734 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Serkh, K., Rokhlin, V.: On the solution of the Helmholtz equation on regions with corners. Proc. Natl. Acad. Sci. 113, 9171–9176 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shen, J., Wang, L.-L.: Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains. SIAM J. Numer. Anal. 45, 1954–1978 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Trefethen, L. N., Bau, D.: III: Numerical Linear Algebra. SIAM (1997)

Download references

Funding

Funding was provided by Division of Mathematical Sciences under Grand Number DMS-2012585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Ethics declarations

Conflict of interest

The authors have no relevant financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by NSF Grant DMS-1720442 and AFOSR Grant FA9550-16-1-0102.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Shen, J. A Fictitious Domain Spectral Method for Solving the Helmholtz Equation in Exterior Domains. J Sci Comput 94, 46 (2023). https://doi.org/10.1007/s10915-023-02098-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02098-5

Keywords

Mathematics Subject Classification

Navigation