Skip to main content
Log in

Data-Driven Reduced Order Modelling for Patient-Specific Hemodynamics of Coronary Artery Bypass Grafts with Physical and Geometrical Parameters

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work the development of a machine learning-based Reduced Order Model (ROM) for the investigation of hemodynamics in a patient-specific configuration of Coronary Artery Bypass Graft (CABG) is proposed. The computational domain is referred to left branches of coronary arteries when a stenosis of the Left Main Coronary Artery (LMCA) occurs. The method extracts a reduced basis space from a collection of high-fidelity solutions via a Proper Orthogonal Decomposition (POD) algorithm and employs Artificial Neural Networks (ANNs) for the computation of the modal coefficients. The Full Order Model (FOM) is represented by the incompressible Navier-Stokes equations discretized using a Finite Volume (FV) technique. Both physical and geometrical parametrization are taken into account, the former one related to the inlet flow rate and the latter one related to the stenosis severity. With respect to the previous works focused on the development of a ROM framework for the evaluation of coronary artery disease, the novelties of our study include the use of the FV method in a patient-specific configuration, the use of a data-driven ROM technique and the mesh deformation strategy based on a Free Form Deformation (FFD) technique. The performance of our ROM approach is analyzed in terms of the error between full order and reduced order solutions as well as the speed-up achieved at the online stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Revault d’Allonnes, F., Corbineau, H., Le Breton, H., Leclercq, C., Leguerrier, A., Daubert, C.: Isolated left main coronary artery stenosis: long term follow up in 106 patients after surgery. Intervent. Cardiol. Surg. 87(6), 544–548 (2002)

    Google Scholar 

  2. Scott, R., Blackstone, E.H., McCarthy, P.M., Lytle, B.W., Loop, F.D., White, J.A., Cosgrove, D.M.: Isolated bypass grafting of the left internal thoracic artery to the left anterior descending coronary artery: late consequences of incomplete revascularization. Am. Assoc. Thoracic Surg. 120(1), 173–184 (2000)

    Article  Google Scholar 

  3. Harling, L., Sepehripour, A.H., Ashrafian, H., Lane, T., Jarral, O., Chikwe, J., Dion, R.A.E., Athanasiou, T.: Surgical patch angioplasty of the left main coronary artery. Eur. J. Cardiothorac. Surg. 42(4), 719–727 (2012)

    Article  Google Scholar 

  4. Gaudino, M., Massetti, M., Farina, P., Hanet, C., Etienne, P., Mazza, A., Glineur, D.: Chronic competitive flow from a patent arterial or venous graft to the circumflex system does not impair the long-term patency of internal thoracic artery to left anterior descending grafts in patients with isolated predivisional left main disease: Long-term angiographic results of 2 different revascularization strategies. J. Thorac. Cardiovasc. Surg. 148(5), 1856–1859 (2014)

    Article  Google Scholar 

  5. Rosenblum, J.M., Binongo, J., Wei, J., Liu, Y., Leshnower, B.G., Chen, E.P., Miller, J.S., Macheers, S.K., Lattouf, O.M., Guyton, R.A., Thourani, V.H., Halkos, M.E., Keeling, W.B.: Priorities in coronary artery bypass grafting: is midterm survival more dependent on completeness of revascularization or multiple arterial grafts? J. Thorac. Cardiovasc. Surg. 161(6), 2070-2078.e6 (2020)

    Article  Google Scholar 

  6. Rastan, A.J.: Treatment of coronary artery disease: randomized trials on myocardial revascularization and complete arterial bypass grafting. J. Thoracic Cardiovas. Surg 65(S03), S167–S173 (2017)

    Google Scholar 

  7. Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovascular Mathematics Modeling and Simulation of the Circulatory System. Springer, Milan (2009)

    MATH  Google Scholar 

  8. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Equations, p. 590. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  9. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives Comput. Methods Eng. 15, 229–275 (2008)

    Article  MATH  Google Scholar 

  10. Huynh, D.B.P., Knezevic, D.J., Patera, A.T.: Certified reduced basis model validation: a frequentistic uncertainty framework. Comput. Methods Appl. Mech. Eng. 201, 13–24 (2012)

    Article  MATH  Google Scholar 

  11. Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Miguel Silveira, L.: Model order reduction: volume 3 applications, De Gruyter (2020)

  12. Noor, A.K.: Recent advances in reduction methods for nonlinear problems, Comput. Methods Nonlinear Struct. Solid Mech., 31-44 (1981)

  13. Quarteroni, A., Rozza, G.: Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numer. Methods Partial Differ. Equ. An Int. J. 23(4), 923–948 (2007)

    Article  MATH  Google Scholar 

  14. Manzoni, A., Quarteroni, A., Rozza, G.: Computational reduction for parametrized PDEs: strategies and applications. Milan J. Math. 80(2), 283–309 (2012)

    Article  MATH  Google Scholar 

  15. Deparis, S., Rozza, G.: Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: applications to natural convection in a cavity. J. Comput. Phys. 228(12), 4359–4378 (2009)

    Article  MATH  Google Scholar 

  16. Ballarin, F., Faggiano, E., Ippolito, S., Manzoni, A., Quarteroni, A., Rozza, G., Scrofani, R.: Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization. J. Comput. Phys. 315, 609–628 (2016)

    Article  MATH  Google Scholar 

  17. Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: A reduced computational and geometrical framework for inverse problems in hemodynamics. Int. J. Numer. Methods Biomed. Eng. 29(7), 741–776 (2013)

    Article  Google Scholar 

  18. Ballarin, F., Faggiano, E., Manzoni, A., Quarteroni, A., Rozza, G., Ippolito, S., Antona, C., Scrofani, R.: Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts. Biomech. Model. Mechanobiol. 16(4), 1373–1399 (2017)

    Article  MATH  Google Scholar 

  19. Manzoni, A., Quarteroni, A., Rozza, G.: Model reduction techniques for fast blood flow simulation in parametrized geometries. Int. J. Numer. Methods Biomed. Eng. 28(6–7), 604–625 (2012)

    Article  Google Scholar 

  20. Manzoni, A., Quarteroni, A., Rozza, G.: Shape optimization for viscous flows by reduced basis methods and free-form deformation. Int. J. Numer. Meth. Fluids 70(5), 646–670 (2012)

    Article  MATH  Google Scholar 

  21. Pitton, G., Quaini, A., Rozza, G.: Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: applications to coanda effect in cardiology. J. Comput. Phys. 344, 534–557 (2017)

    Article  Google Scholar 

  22. Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Int. J. Numer. Meth. Eng. 102(5), 1136–1161 (2015)

    Article  MATH  Google Scholar 

  23. Zainib, Z., Ballarin, F., Fremes, S., Triverio, P., Jiménez-Juan, L., Rozza, G.: Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation. Int. J. Numer. Methods Biomed. Eng. 37(12), e3367 (2020)

    Google Scholar 

  24. Fevola, E., Ballarin, F., Jiménez-Juan, L., Fremes, S., Grivet-Talocia, S., Rozza, G., Triverio, P.: An optimal control approach to determine resistance-type boundary conditions from in-vivo data for cardiovascular simulations. Int. J. Numer. Methods Biomed. Eng. 37(10), e3516 (2021)

    Article  Google Scholar 

  25. Mao, Z., Jagtap, A.D., Karniadakis, G.E.: Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech. Eng. 360, 112789 (2020)

    Article  MATH  Google Scholar 

  26. Kissas, G., Yang, Y., Hwuang, E., Witschey, W.R., Detre, J.A., Perdikaris, P.: Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 358, 112623 (2019)

    Article  MATH  Google Scholar 

  27. Liang, L., Mao, W., Sun, W.: A feasibility study of deep learning for predicting hemodynamics of human thoracic aorta. J. Biomech. 99, 109544 (2020)

    Article  Google Scholar 

  28. Gharleghi, R., Samarasinghe, G., Sowmya, A., Beier, S.: Deep learning for time averaged wall shear stress prediction in left main coronary bifurcations, In: International Symposium on Biomedical Imaging, pp. 1–4 (2020)

  29. Su, B., Zhang, J., Zou, H., Ghista, D., Le Thao, T., Chin, C.: Generating wall shear stress for coronary artery in real-time using neural networks feasibility and initial results based on idealized models. Comput. Biol. Med. 126, 104038 (2020)

    Article  Google Scholar 

  30. Hesthaven, J.S., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys. 363, 55–78 (2018)

    Article  MATH  Google Scholar 

  31. Wang, Q., Hesthaven, J.S., Ray, D.: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem. J. Comput. Phys. 384, 289–307 (2019)

    Article  MATH  Google Scholar 

  32. Siena, P., Girfoglio, M., Rozza, G.: Fast and accurate numerical simulations for the study of coronary artery bypass grafts by artificial neural network. arXiv:2201.01804 (2021)

  33. Zancanaro, M., Mrosek, M., Stabile, G., Othmer, C., Rozza, G.: Hybrid neural network reduced order modelling for turbulent flows with geometric parameters. Fluids 6(8), 296 (2021)

    Article  Google Scholar 

  34. Shah, N.V., Girfoglio, M., Quintela, P., Rozza, G., Lengomin, A., Ballarin, F., Barral, P.: Finite element based model order reduction for parametrized one-way coupled steady state linear thermomechanical problems. Finite Elem. Anal. Des. 212, 103837 (2022)

    Article  Google Scholar 

  35. Buoso, S., Manzoni, A., Alkadhi, H., Plass, A., Quarteroni, A., Kurtcuoglu, V.: Reduced-order modeling of blood flow for noninvasive functional evaluation of coronary artery disease. Biomech. Model. Mechanobiol. 18(6), 1867–1881 (2019)

    Article  Google Scholar 

  36. Girfoglio, M., Ballarin, F., Infantino, G., Nicoló, F., Montalto, A., Rozza, G., Musumeci, F.: Non-intrusive PODI-ROM for patient-specific aortic blood flow in presence of a LVAD device. Med. Eng. Phys. 107, 103849 (2022)

    Article  Google Scholar 

  37. Girfoglio, M., Scandurra, L., Ballarin, F., Infantino, G., Nicoló, F., Montalto, A., Musumeci, F.: Non-intrusive data-driven ROM framework for hemodynamics problems. Acta. Mech. Sin. 37(7), 1183–1191 (2021)

    Article  Google Scholar 

  38. Pichi, F., Ballarin, F., Rozza, G., Hesthaven, J.S.: Artificial neural network for bifurcating phenomena modelled by nonlinear parametrized PDEs. Panam. Math. J. 20(S1), e202000350 (2021)

    Google Scholar 

  39. Papapicco, D., Demo, N., Girfoglio, M., Stabile, G., Rozza, G.: The neural network shifted-Proper orthogonal decomposition: a machine learning approach for non-linear reduction of hyperbolic equations. Comput. Methods Appl. Mech. Eng. 392, 114687 (2022)

    Article  MATH  Google Scholar 

  40. Demo, N., Strazzullo, M., Rozza, G.: An extended physics informed neural network for preliminary analysis of parametric optimal control problems, arXiv:2110.13530 (2021)

  41. Meneghetti, L., Demo, N., Rozza, G. A Dimensionality Reduction Approach for Convolutional Neural Networks. arXiv:2110.09163 (2021)

  42. Stabile, G., Zancanaro, M., Rozza, G.: Efficient geometrical parametrization for finite-volume-based reduced order methods. Int. J. Numer. Meth. Eng. 121(12), 2655–2682 (2020)

    Article  Google Scholar 

  43. Brujic, D., Ristic, M., Ainsworth, I.: Measurement-based modification of NURBS surfaces. Comput. Aided Des. 34(3), 173–183 (2002)

    Article  Google Scholar 

  44. Amoiralis, E.I., Nikolos, I.K.: Freeform deformation versus B-spline representation in inverse airfoil design. J. Comput. Inf. Sci. Eng. 8(2), 024001 (2008)

    Article  Google Scholar 

  45. Lamousin, H.J., Waggenspack, N.N.: NURBS-based free-form deformations. Comput. Graph. Appl. 14(6), 59–65 (1994)

    Article  Google Scholar 

  46. Keegan, J., Gatehouse, P.D., Yang, G.Z., Firmin, D.N.: Spiral phase velocity mapping of left and right coronary artery blood flow: correction for through-plane motion using selective fat-only excitation. J. Magn. Reson. Imag. 20(6), 953–960 (2004)

    Article  Google Scholar 

  47. Ishida, N., Sakuma, H., Cruz, B.P., Shimono, T., Tokui, T., Yada, I., Takeda, K., Higgins, C.B.: MR flow measurement in the internal mammary artery-to-coronary artery bypass graft: comparison with graft stenosis at radiographic angiography. Radiology 220(2), 441–447 (2001)

    Article  Google Scholar 

  48. Verim, S., Öztürk, E., Küçük, U., Kara, K., Sağlam, M., Kardeşoğlu, E.: Cross-sectional area measurement of the coronary arteries using CT angiography at the level of the bifurcation: is there a relationship? Diag. Intervent. Radiol. J. 21(6), 454 (2015)

    Article  Google Scholar 

  49. Girfoglio, M., Quaini, A., Rozza, G.: A Finite Volume approximation of the Navier–Stokes equations with nonlinear filtering stabilization. Comput. Fluids 187, 27–45 (2019)

    Article  MATH  Google Scholar 

  50. Jasak, H.: Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows, Ph.D. Thesis, Imperial College, University of London (1996)

  51. Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator splitting. J. Comput. Phys. 62(1), 40–65 (1985)

    Article  Google Scholar 

  52. Bang-Jensen, J., Gutin, G., Yeo, A.: When the greedy algorithm fails. Discret. Optim. 1(2), 121–127 (2004)

    Article  MATH  Google Scholar 

  53. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936)

    Article  MATH  Google Scholar 

  54. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. J. Numer. Anal. 40(2), 492–515 (2002)

    Article  MATH  Google Scholar 

  55. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction, vol. 92. Springer, Berlin (2015)

    MATH  Google Scholar 

  56. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Amsterdam (2016)

    MATH  Google Scholar 

  57. Kriesel, D.: A Brief Introduction on Neural Networks, Citeseer (2007)

  58. Calin, O.: Deep Learning Architectures. Springer, Berlin (2020)

    Book  MATH  Google Scholar 

  59. Sharma, S., Sharma, S., Athaiya, A.: Activation functions in neural networks. Towards Data Sci. 6(12), 310–316 (2017)

    Google Scholar 

  60. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  61. Minsky, M., Papert, S.: An Introduction to Computational Geometry. Cambridge Tiass, HIT 479, 480 (1969)

  62. Fine, T.L.: Feedforward Neural Network Methodology. Springer, Berlin (2006)

    MATH  Google Scholar 

  63. Rojas, R.: The Backpropagation Algorithm in Neural networks. Springer, Berlin, Heidelberg (1996)

    Book  Google Scholar 

  64. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by backPropagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  Google Scholar 

  65. Chen, W., Wang, Q., Hesthaven, J.S., Zhang, C.: Physics-informed machine learning for reduced-order modeling of non linear problems. J. Comput. Phys. 446, 110666 (2021)

    Article  MATH  Google Scholar 

  66. Loth, F., Fischer, P.F., Bassiouny, H.S.: Blood flow in end-to-side anastomoses. Annu. Rev. Fluid Mech. 40, 367–393 (2008)

    Article  MATH  Google Scholar 

  67. Phillips, T.R., Heaney, C.E., Smith, P.N., Pain, C.C.: An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion. Int. J. Numer. Meth. Eng. 122(15), 3780–3811 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support provided by the European Research Council Executive Agency by the Consolidator Grant project AROMA-CFD “Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics”-GA 681447, H2020-ERC CoG 2015 AROMA-CFD, the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions, grant agreement 872442 (ARIA), as well as developers and contributors of OpenFOAM®. FB also thanks the project “Reduced order modelling for numerical simulation of partial differential equations” funded by UniversitéCattolica del Sacro Cuore.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Rozza.

Ethics declarations

Conflicts of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siena, P., Girfoglio, M., Ballarin, F. et al. Data-Driven Reduced Order Modelling for Patient-Specific Hemodynamics of Coronary Artery Bypass Grafts with Physical and Geometrical Parameters. J Sci Comput 94, 38 (2023). https://doi.org/10.1007/s10915-022-02082-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02082-5

Keywords

Navigation