Skip to main content
Log in

Adaptive FEM for Helmholtz Equation with Large Wavenumber

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A posteriori upper and lower bounds are derived for the linear finite element method (FEM) for the Helmholtz equation with large wavenumber. It is proved rigorously that the standard residual type error estimator seriously underestimates the true error of the FE solution for the mesh size h in the preasymptotic regime, which is first observed by Babuška et al. (Int J Numer Methods Eng 40:3443–3462, 1997) for a one dimensional problem. By establishing an equivalence relationship between the error estimators for the FE solution and the corresponding elliptic projection of the exact solution, an adaptive algorithm is proposed and its convergence and quasi-optimality are proved under the condition that \(k^3h_0^{1+\alpha }\) is sufficiently small, where k is the wavenumber, \(h_0\) is the initial mesh size, and \(\frac{1}{2}<\alpha \le 1\) is a regularity constant depending on the maximum reentrant angle of the domain. Numerical tests are given to verify the theoretical findings and to show that the adaptive continuous interior penalty finite element method (CIP-FEM) with appropriately selected penalty parameters can greatly reduce the pollution error and hence the residual type error estimator for this CIP-FEM is reliable and efficient even in the preasymptotic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, New York (2000)

    MATH  Google Scholar 

  2. Babuška, I., Rheinboldt, C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Sauter, S.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42, 451–484 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Ihlenburg, F., Paik, E.T., Sauter, S.: A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput. Meth. Appl. Mech. Eng. 128, 325–359 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Ihlenburg, F., Strouboulis, T., Gangaraj, S.K.: A posteriori error estimation for finite element solutions of Helmholtz equation. Part I: the quality of local indicators and estimators. Int. J. Numer. Methods Eng. 40, 3443–3462 (1997)

    MATH  Google Scholar 

  6. Babuška, I., Ihlenburg, F., Strouboulis, T., Gangaraj, S.K.: A posteriori error estimation for finite element solutions of Helmholtz equation—Part II : estimation of the pollution error. Int. J. Numer. Methods Eng. 40, 3883–3900 (1997)

    MATH  Google Scholar 

  7. Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Eng. 3, 181–191 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Bespalov, A., Haberl, A., Praetorius, D.: Adaptive fem with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems. Comput. Methods Appl. Mech. Eng. 317, 318–340 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  11. Burman, E., Zhu, L., Wu, H.: Linear continuous interior penalty finite element method for Helmholtz equation with high wave number: one-dimensional analysis. Numer. Methods Partial Differ. Equ. 32, 1378–1410 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Chaumont-Frelet, T., Nicaise, S.: High-frequency behaviour of corner singularities in Helmholtz problems. ESAIM:M2AN 52, 1803–1845 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Chaumont-Frelet, T., Ern, A., Vohralík, M.: On the derivation of guaranteed and \(p\)-robust a posteriori error estimates for the Helmholtz equation. Numer. Math. 148, 525–573 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Chaumont-Frelet, T., Gallistl, D., Nicaise, S., Tomezyk, J.: Wavenumber-explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers. Commun. Math. Sci. 20, 1–52 (2022)

    MathSciNet  MATH  Google Scholar 

  16. Chen, Z., Wu, H.: An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41, 799–826 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland (1978)

  18. Cummings, P., Feng, X.: Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. \({{\rm M}}^{3}\) AS 16, 139–160 (2006)

  19. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Dörfler, W., Sauter, S.: A posteriori error estimation for highly indefinite Helmholtz problems. Comput. Methods Appl. Math. 13, 333–347 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Douglas, J., Jr., Dupont, T.: Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. Lecture Notes in Phys, vol. 58. Springer, Berlin (1976)

    Google Scholar 

  22. Du, Y., Wu, H.: Preasymptotic error analysis of higher order FEM and CIP-FEM for Helmholtz equation with high wave number. SIAM J. Numer. Anal. 53, 782–804 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Du, Y., Wu, H., Zhang, Z.: Superconvergence analysis of linear fem based on polynomial preserving recovery for Helmholtz equation with high wave number. J. Comput. Appl. Math. 372, 112731 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32, 313–357 (1979)

    MathSciNet  MATH  Google Scholar 

  25. Feng, X., Wu, H.: Discontinuous Galerkin methods for the Helmholtz equation with large wave numbers. SIAM J. Numer. Anal. 47, 2872–2896 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Feng, X., Wu, H.: hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput. 80, 1997–2024 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Gaspoz, F.D., Morin, P.: Convergence rates for adaptive finite elements. IMA J. Numer. Anal. 29, 917–936 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  29. Han, C.: Dispersion analysis of the IPFEM for the Helmholtz equation with high wave number on equilateral triangular meshes, Master’s thesis, Nanjing University (2012)

  30. Hetmaniuk, U.: Stability estimates for a class of Helmholtz problems. Commun. Math. Sci. 5, 665–678 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Hoppe, R.H.W., Sharma, N.: Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation. IMA J. Numer. Anal. 33, 898–921 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Ihlenburg, F.: Finite Element Analysis of Acoustic Scattering. Appl. Math. Sci., vol. 132. Springer, New York (1998)

    MATH  Google Scholar 

  33. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. The \(h\)-version of the FEM, I. Comput. Math. Appl. 30, 9–37 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Irimie, S., Bouillard, Ph.: A residual a posteriori error estimator for the finite element solution of the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 190, 4027–4042 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Kapita, S., Monk, P., Warburton, T.: Residual-based adaptivity and PWDG methods for the Helmholtz equation. SIAM J. Sci. Comp. 37, A1525–A1553 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Li, Y., Wu, H.: FEM and CIP-FEM for Helmholtz equation with high wave number and perfectly matched layer truncation. SIAM J. Numer. Anal. 57, 96–126 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Mekchay, K., Nochetto, R.H.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Melenk, J.M.: On generalized finite element methods, PhD thesis, University of Maryland (1995)

  39. Melenk, J.M., Sauter, S.: Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comput. 79, 1871–1914 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49, 1210–1243 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Sauter, S., Zech, J.: A posteriori error estimation of hp-dG finite element methods for highly indefinite Helmholtz problems. SIAM J. Numer. Anal. 53, 2414–2440 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    MathSciNet  MATH  Google Scholar 

  45. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version. IMA J. Numer. Anal. 34(3), 1266–1288 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Zhou, Z., Zhu, L.: Convergence analysis of an adaptive continuous interior penalty finite element method for the Helmholtz equation. IMA J. Numer. Anal. 426, 1061–1079 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Zhu, L., Wu, H.: Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: \(hp\) version. SIAM J. Numer. Anal. 51, 1828–1852 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referees for their careful reviews and valuable comments leading to an improvement of the original presentation.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Wu.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the NSF of China under grants 12171238, 12261160361, and 11525103 and by Fundamental Research Funds for the Central Universities 020314380034.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, S., Wu, H. Adaptive FEM for Helmholtz Equation with Large Wavenumber. J Sci Comput 94, 21 (2023). https://doi.org/10.1007/s10915-022-02074-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02074-5

Keywords

Mathematics Subject Classification

Navigation