Skip to main content
Log in

A New Matrix Maximization Model for Computing Ratios of Generalized Singular Values from High-Order GSVD

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A High-Order Generalized Singular Value Decomposition (HO-GSVD) is employed to compare multiple matrices \(\{ \textbf{A}_i \}_{i=1}^{N}\) with different row dimensions by using their generalized singular values \(\{\sigma _{i,k} \}_{i=1}^{N}\) respectively. The ratio values of \(\sigma _{i,k} / \sigma _{j,k}\) can be used to indicate the significance of the k-th basis vector of the right hand side of matrix from HO-GSVD for multiple matrices \(\{\textbf{A}_i \}_{i=1}^{N}\). The main aim of this paper is to propose and study a new matrix maximization model for computing ratios of \(\sigma _{i,k} / \sigma _{j,k}\) from \({\textbf{A}}_{1},\ldots ,{\textbf{A}}_{N}\). The resulting optimization problem can be solved by using Newton method on Lie Groups, and the convergence of the Newton method with well defined initial value can also be established. Numerical examples for synthetic data and mRNA expression data sets are reported to demonstrate the fast performance of the proposed method for solving the optimization model with other existing state-of-the-art algorithms and Riemannian Newton method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Notes

  1. https://doi.org/10.1371/journal.pone.0028072

References

  1. Ponnapalli, S.P., et al.: A higher-order generalized singular value decomposition for comparison of global mRNA expression from multiple organisms. PLos One 12, e28072 (2011)

    Article  Google Scholar 

  2. Omberg, L., Golub, G.H., Alter, O.: A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies. PNAS 104, 18371–18376 (2007)

    Article  Google Scholar 

  3. Jensen, L.J., Jensen, T.S., de Lichtenberg, U., Brunak, S., Bork, P.: Co-evolution of transcriptional and post-translational cell-cycle regulation. Nature 443, 594–597 (2006)

    Article  Google Scholar 

  4. Chu, D., Moor, B.D.: On a variational formulation of the QSVD and the RSVD. Linear Algebra Appl. 311, 61–78 (2000)

    Article  MATH  Google Scholar 

  5. Alter, O., Brown, P.O., Botstein, D.: Singular value decomposition for genome-wide expression data processing and modelling. Proc. Natl. Acad. Sci. USA 97, 10101–10106 (2000)

    Article  Google Scholar 

  6. Alter, O., Brown, P.O., Botstein, D.: Generalized singular decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc. Natl. Acad. Sci. USA 100, 3351–3356 (2003)

    Article  Google Scholar 

  7. Alter, O., Golub, G.H., Brown, P.O., Botstein, D.: Novel genome-scale correlation between DNA replication and RNA transcription during the cell cycle in yeast is predicted by data- driven models. In Proceedings of the Miami Nature Biotechnology Winter Symposium on the Cell Cycle, Chromosomes and Cancer, Vol. 15, M. P. Deutscher et al., eds., University of Miami School of Medicine, Miami (2004)

  8. Munkres, J.: Topology. 2nd edition, Pearson New international edition (2014)

  9. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: theory of majorization and its applications, 2nd Edition, Springer Series in Statistics (2009)

  10. Bhatia, R.: Matrix Anal. Springer, New York (1997)

    Book  Google Scholar 

  11. Lu, Q.K.: The elliptic geometry of extended spaces. Acta Math. Sin. 13, 49–62 (1963)

    MATH  Google Scholar 

  12. Bai, Z., Demmel, J.W.: Computing the generalized singular value decomposition. SIAM J. Sci. Comput. 14, 1464–1486 (1993)

    Article  MATH  Google Scholar 

  13. Kim, H., Golub, G.H., Park, H.: Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21, 187–198 (2005)

    Article  Google Scholar 

  14. Erlich, A., Jones, G. W., Tisseur, F., Moulton, D. E., Goriely, A.: The role of network topology, growth laws and mechanics in the dynamics of cell assemblies, (2019) arXiv:1904.11161

  15. Nadukandi, P., Higham, N.J.: Computing the wave-kernel matrix functions. SIAM J. Sci. Comput. 40(6), A4060–A4082 (2018)

    Article  MATH  Google Scholar 

  16. Drmač, Z., Jessup, E.: On accurate quotient SVD in floating point arithmetic. SIAM J. Matrix Anal. Appl. 22(3), 853–873 (2000)

    Article  MATH  Google Scholar 

  17. Bai, Z., Zha, H.: A new preprocessing algorithm for the computation of the generalized singular value decomposition. SIAM J. Sci. Comput. 14, 1007–1012 (1993)

    Article  MATH  Google Scholar 

  18. Berge, C.: Topological Spaces: including a treatment of multi-valued functions, vector spaces, and convexity (1963)

  19. Hua, Y.B.: On SVD for estimating generalized eigenvalues of singular matrix pencil in noise. IEEE Trans. Signal Process. 4, 892–900 (1991)

    Article  Google Scholar 

  20. Bai, Z.J., Zha, H.: A new preprocessing algorithm for the computation of the generalized singular value decomposition. SIAM J. Sci. Comput. 14, 1007–1012 (1993)

    Article  MATH  Google Scholar 

  21. Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory. Academic Press, Boston (1990)

    MATH  Google Scholar 

  22. Hua, L.K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. American Mathematical Society, Providence (1963)

    Book  Google Scholar 

  23. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. SIAM Ser. B Numer. Anal. 2, 205–224 (1965)

    MATH  Google Scholar 

  24. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    Book  MATH  Google Scholar 

  25. Sato, H., Iwai, T.: A Riemannian optimization approach to the matrix singular value decomposition. SIAM J. Optim. 23, 188–212 (2013)

    Article  MATH  Google Scholar 

  26. Wang, J.H., Li, C.: Kantorovich’s theorems for Newton’s method for mappings and optimization problems on Lie groups. IMA J. Numer. Anal. 31, 322–347 (2011)

    Article  MATH  Google Scholar 

  27. Mahony, R.E.: The constrained Newton method on a Lie group and the symmetric eigenvalue problem. Linear Algebra Appl. 248(15), 67–89 (1996)

    Article  MATH  Google Scholar 

  28. Xu, W.W., Li, W., Zhu, L., Huang, X.P.: The analytic solutions of a class of constrained matrix minimization and maximization problems with applications. SIAM J. Optim. 29, 1657–1686 (2019)

    Article  MATH  Google Scholar 

  29. Xu, W.W., Ng, M.K., Bai, Z.J.: Geometric inexact newton method for generalized singular values of Grassmann matrix pair. SIAM J. Matrix Anal. Appl. 43, 535–560 (2022)

    Article  MATH  Google Scholar 

  30. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  31. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217–288 (2011)

    Article  MATH  Google Scholar 

  32. Simoncini, V.: Computational methods for linear matrix equations. SIAM Rev. 58, 377–441 (2016)

    Article  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Wei Xu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Wei-Wei Xu is partially supported by the National Natural Science Foundation of China (No. 11971243). The research of Michael K. Ng is partially supported by Hong Kong Research Grant Council GRF 12300218, 12300519, 17201020, 17300021, C1013-21GF, C7004-21GF and Joint NSFC-RGC N-HKU76921.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, WW., Ng, M.K. A New Matrix Maximization Model for Computing Ratios of Generalized Singular Values from High-Order GSVD. J Sci Comput 94, 35 (2023). https://doi.org/10.1007/s10915-022-02071-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02071-8

Keywords

Mathematics Subject Classification

Navigation