Skip to main content
Log in

Fast and Accurate Artificial Compressibility Ensemble Algorithms for Computing Parameterized Stokes–Darcy Flow Ensembles

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Accurate simulations of the Stokes–Darcy system face many difficulties including the coupling of flows in two different subdomains via interface conditions, the incompressibility constraint for the free flow and uncertainties in model parameters. In this report, we propose and study efficient, decoupled, artificial compressibility (AC) ensemble schemes based on a recently developed SAV approach for fast computation of Stokes–Darcy flow ensembles. The proposed algorithms (1) do not require any time step condition and (2) decouple the computation of the velocity and pressure in the free flow region, and (3) result in a common coefficient matrix for all realizations after spatial discretization for which efficient iterative linear solvers such as block CG or block GMRES can be used to greatly reduce the computational cost. We prove the long time stability under two parameter conditions, without any timestep constraints. In particular, for one single simulation, they are unconditionally stable schemes. Several numerical tests are presented to demonstrate the efficiency of the algorithms and illustrate their applications in realistic flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Parts of the data and materials are available upon reasonable request.

References

  1. Babus̆ka, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)

  2. Barth, A., Lang, A.: Multilevel Monte Carlo method with applications to stochastic partial differential equations. Int. J. Comput. Math. 89, 2479–2498 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Bear, J.: Hydraulics of Groundwater. McGraw-Hill, New York (1979)

    Google Scholar 

  4. Beavers, G., Joseph, D.: Boundary conditions at a naturally impermeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Google Scholar 

  5. Calandra, H., Gratton, S., Langou, J., Pinel, X., Vasseur, X.: Flexible variants of block restarted GMRES methods with application to geophysics. SIAM J. Sci. Comput. 34(2), 714–736 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Cao, Y., Gunzburger, M., He, X., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes–Darcy systems. Math. Comput. 83, 1617–1644 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Carter, J., Jiang, N.: Numerical analysis of a second order ensemble method for evolutionary magnetohydrodynamics equations at small magnetic Reynolds number. Numer. Methods Partial Differ. Equ. 38, 1407–1436 (2022)

    MathSciNet  Google Scholar 

  8. Chen, W., Gunzburger, M., Sun, D., Wang, X.: Efficient and long-time accurate second-order methods for the Stokes–Darcy system. SIAM J. Numer. Anal. 51, 2563–2584 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Chen, R.M., Layton, W., McLaughlin, M.: Analysis of variable-step/non-autonomous artificial compression methods. J. Math. Fluid Mech. 21, 30 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967)

    MathSciNet  MATH  Google Scholar 

  11. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    MathSciNet  MATH  Google Scholar 

  12. Connors, J.: An ensemble-based conventional turbulence model for fluid-fluid interactions. Int. J. Numer. Anal. Model. 15, 492–519 (2018)

    MathSciNet  MATH  Google Scholar 

  13. DeCaria, V., Layton, W., McLaughlin, M.: A conservative, second order, unconditionally stable artificial compression method. Comput. Methods Appl. Mech. Eng. 325, 733–747 (2017)

    MathSciNet  MATH  Google Scholar 

  14. DeCaria, V., Illiescu, T., Layton, W., McLaughlin, M., Schneier, M.: An artificial compression reduced order model. SIAM J. Numer. Anal. 58, 565–589 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Discacciati, M., Quarteroni, A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6, 93–103 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, 2nd edn. Oxford University Press, New York (2014)

    MATH  Google Scholar 

  18. Ervin, V., Jenkins, E., Sun, S.: Coupling nonlinear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 61, 1198–1222 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Feng, Y.T., Owen, D.R.J., Peric, D.: A block conjugate gradient method applied to linear systems with multiple right hand sides. Comput. Methods Appl. Mech. 127, 1–4 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Fiordilino, J.: A second order ensemble timestepping algorithm for natural convection. SIAM J. Numer. Anal. 56, 816–837 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Fiordilino, J., Khankan, S.: Ensemble timestepping algorithms for natural convection. Int. J. Numer. Anal. Model. 15, 524–551 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Gallopulos, E., Simoncini, V.: Convergence of BLOCK GMRES and matrix polynomials. Linear Algebra Appl. 247, 97–119 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Ganis, B., Klie, H., Wheeler, M., Wildey, T., Yotov, I., Zhang, D.: Stochastic collocation and mixed finite elements for flow in porous media. Comput. Methods Appl. Mech. Eng. 197, 3547–3559 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Girault, V., Vassilev, D., Yotov, I.: Mortar multiscale finite element methods for Stokes–Darcy flows. Numer. Math. 127, 93–165 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Goda, K.: A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows. J. Comput. Phys. 30, 76–95 (1979)

    MATH  Google Scholar 

  26. Guermond, J., Minev, P.: High-order time stepping for the incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 37, A2656–A2681 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Guermond, J., Minev, P.: High-order adaptive time stepping for the incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 41, A770–A788 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Guermond, J.L., Shen, J.: Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41, 112–134 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Guermond, J.L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comput. 73, 1719–1737 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Gunzburger, M., Jiang, N., Schneier, M.: An ensemble-proper orthogonal decomposition method for the nonstationary Navier–Stokes equations. SIAM J. Numer. Anal. 55, 286–304 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Gunzburger, M., Jiang, N., Schneier, M.: A higher-order ensemble/proper orthogonal decomposition method for the nonstationary Navier–Stokes equations. Int. J. Numer. Anal. Model. 15, 608–627 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Gunzburger, M., Jiang, N., Wang, Z.: An efficient algorithm for simulating ensembles of parameterized flow problems. IMA J. Numer. Anal. 39, 1180–1205 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Gunzburger, M., Jiang, N., Wang, Z.: A second-order time-stepping scheme for simulating ensembles of parameterized flow problems. Comput. Methods Appl. Math. 19, 681–701 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Gunzburger, M., Iliescu, T., Schneier, M.: A Leray regularized ensemble-proper orthogonal decomposition method for parameterized convection-dominated flows. IMA J. Numer. Anal. 40, 886–913 (2020)

    MathSciNet  MATH  Google Scholar 

  36. He, X., Jiang, N., Qiu, C.: An artificial compressibility ensemble algorithm for a stochastic Stokes–Darcy model with random hydraulic conductivity and interface conditions. Int. J. Numer. Methods Eng. 121, 712–739 (2020)

    MathSciNet  Google Scholar 

  37. Helton, J.C., Davis, F.J.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 81, 23–69 (2003)

    Google Scholar 

  38. Hosder, S., Walters, R., Perez, R.: A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations. In: AIAA-Paper 2006-891, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2006, CD-ROM

  39. Jager, W., Mikelic, A.: On the boundary condition at the interface between a porous medium and a free fluid. SIAM J. Appl. Math. 60, 1111–1127 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Ji, H., Li, Y.: A breakdown-free block conjugate gradient method. BIT Numer. Math. 57(2), 379–403 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Jiang, N.: A higher order ensemble simulation algorithm for fluid flows. J. Sci. Comput. 64, 264–288 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Jiang, N.: A second-order ensemble method based on a blended backward differentiation formula timestepping scheme for time-dependent Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 33, 34–61 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Jiang, N.: A pressure-correction ensemble scheme for computing evolutionary Boussinesq equations. J. Sci. Comput. 80, 315–350 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Jiang, N., Layton, W.: An algorithm for fast calculation of flow ensembles. Int. J. Uncertain. Quantif. 4, 273–301 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Jiang, N., Layton, W.: Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion. Numer. Methods Partial Differ. Equ. 31, 630–651 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Jiang, N., Qiu, C.: An efficient ensemble algorithm for numerical approximation of stochastic Stokes–Darcy equations. Comput. Methods Appl. Mech. Eng. 343, 249–275 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Jiang, N., Qiu, C.: Numerical analysis of a second order ensemble algorithm for numerical approximation of stochastic Stokes–Darcy equations. J. Comput. Appl. Math. 406, 113934 (2022)

    MathSciNet  MATH  Google Scholar 

  48. Jiang, N., Schneier, M.: An efficient, partitioned ensemble algorithm for simulating ensembles of evolutionary MHD flows at low magnetic Reynolds number. Numer. Methods Partial Differ. Equ. 34, 2129–2152 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Jiang, N., Yang, H.: Stabilized scalar auxiliary variable ensemble algorithms for parameterized flow problems. SIAM J. Sci. Comput. 43(4), A2869–A2896 (2021)

    MathSciNet  MATH  Google Scholar 

  50. Jiang, N., Yang, H.: SAV decoupled ensemble algorithms for fast computation of Stokes–Darcy flow ensembles. Comput. Methods Appl. Mech. Eng. 387, 114150 (2021)

    MathSciNet  MATH  Google Scholar 

  51. Jiang, N., Kaya, S., Layton, W.: Analysis of model variance for ensemble based turbulence modeling. Comput. Methods Appl. Math. 15, 173–188 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Jiang, N., Kubacki, M., Layton, W., Moraiti, M., Tran, H.: A Crank–Nicolson Leapfrog stabilization: unconditional stability and two applications. J. Comput. Appl. Math. 281, 263–276 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Jiang, N., Li, Y., Yang, H.: An artificial compressibility Crank–Nicolson leap-frog method for the Stokes–Darcy model and application in ensemble simulations. SIAM J. Numer. Anal. 59, 401–428 (2021)

    MathSciNet  MATH  Google Scholar 

  54. Jiang, N., Li, Y., Yang, H.: A second order ensemble method with different subdomain time steps for simulating coupled surface-groundwater flows. Accepted in Numerical Methods for Partial Differential Equations, in press, (2022)

  55. Jiang, N., Takhirov, A., Waters, J.: Robust SAV-ensemble algorithms for parametrized flow problems with energy stable open boundary conditions. Comput. Methods Appl. Mech. Eng. 392, 114709 (2022)

    MathSciNet  MATH  Google Scholar 

  56. Kubacki, M., Moraiti, M.: Analysis of a second-order, unconditionally stable, partitioned method for the evolutionary Stokes–Darcy model. Int. J. Numer. Anal. Model. 12, 704–730 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Kuo, F., Schwab, C., Sloan, I.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50, 3351–3374 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Kuznetsov, B., Vladimirova, N., Yanenko, N.: Numerical Calculation of the Symmetrical Flow of Viscous Incompressible Liquid around a Plate (in Russian). Studies in Mathematics and its Applications, Nauka, Moscow (1966)

    Google Scholar 

  59. Layton, W., McLaughlin, M.: Doubly-adaptive artificial compression methods for incompressible flow. J. Numer. Math. 28, 175–192 (2020)

    MathSciNet  MATH  Google Scholar 

  60. Layton, W., Xu, S.: Conditioning of linear systems arising from penalty methods. arXiv:2206.06971 (2022)

  61. Layton, W., Tran, H., Xiong, X.: Long time stability of four methods for splitting the evolutionary Stokes–Darcy problem into Stokes and Darcy subproblems. J. Comput. Appl. Math. 236, 3198–3217 (2012)

    MathSciNet  MATH  Google Scholar 

  62. Layton, W., Tran, H., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J. Numer. Anal. 51, 248–272 (2013)

    MathSciNet  MATH  Google Scholar 

  63. Li, Y., Hou, Y., Rong, Y.: A second-order artificial compression method for the evolutionary Stokes–Darcy system. Numer. Algorithms 84, 1019–1048 (2020)

    MathSciNet  MATH  Google Scholar 

  64. Li, X., Shen, J., Liu, Z.: New SAV-pressure correction methods for the Navier–Stokes equations: stability and error analysis. Math. Comput. 91, 141–167 (2022)

    MathSciNet  MATH  Google Scholar 

  65. McCarthy, J.F.: Block-conjugate-gradient method. Phys. Rev. D 40, 2149 (1989)

    Google Scholar 

  66. Mohebujjaman, M., Rebholz, L.: An efficient algorithm for computation of MHD flow ensembles. Comput. Methods Appl. Math. 17, 121–137 (2017)

    MathSciNet  MATH  Google Scholar 

  67. Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comput. 79, 707–731 (2010)

    MathSciNet  MATH  Google Scholar 

  68. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)

    MathSciNet  MATH  Google Scholar 

  69. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra Appl. 29, 293–322 (1980)

    MathSciNet  MATH  Google Scholar 

  70. Reagan, M., Najm, H.N., Ghanem, R.G., Knio, O.M.: Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection. Combust. Flame 132, 545–555 (2003)

    Google Scholar 

  71. Romero, V., Burkardt, J., Gunzburger, M., Peterson, J.: Comparison of pure and “Latinized’’ centroidal Voronoi tessellation against various other statistical sampling methods. Reliab. Eng. Syst. Saf. 91, 1266–1280 (2006)

    Google Scholar 

  72. Rong, Y., Layton, W., Zhao, H.: Numerical analysis of an artificial compression method for magnetohydrodynamic flows at low magnetic Reynolds numbers. J. Sci. Comput. 76, 1458–1483 (2018)

    MathSciNet  MATH  Google Scholar 

  73. Saffman, P.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 93–101 (1971)

    MATH  Google Scholar 

  74. Shan, L., Zheng, H., Layton, W.: A decoupling method with different subdomain time steps for the nonstationary Stokes–Darcy model. Numer. Methods for Partial Differ. Equ. 29, 549–583 (2013)

    MathSciNet  MATH  Google Scholar 

  75. Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29, 57–77 (1992)

    MathSciNet  MATH  Google Scholar 

  76. Shen, J.: On error estimates of projection methods for Navier–Stokes equations: second-order schemes. Math. Comput. 65, 1039–1065 (1996)

    MathSciNet  MATH  Google Scholar 

  77. Takhirov, A., Waters, J.: Ensemble algorithm for parametrized flow problems with energy stable open boundary conditions. Comput. Methods Appl. Math. 20, 531–554 (2020)

    MathSciNet  MATH  Google Scholar 

  78. Takhirov, A., Neda, M., Waters, J.: Time relaxation algorithm for flow ensembles. Numer. Methods Partial Differ. Equ. 32, 757–777 (2016)

    MathSciNet  MATH  Google Scholar 

  79. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I). Arch. Rational. Mech. Anal. 33, 135–153 (1969)

    MATH  Google Scholar 

  80. Temam, R.: Sur l’approximation de la solution des equations de Navier–Stokes par la m\(\acute{e}\)thode des fractionnarires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Google Scholar 

  81. van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7, 870–891 (1987)

    MathSciNet  MATH  Google Scholar 

  82. Weinan, E., Liu, J.-G.: Projection method I: convergence and numerical boundary layers. SIAM J. Numer. Anal. 32, 1017–1057 (1995)

    MathSciNet  MATH  Google Scholar 

  83. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Nan Jiang was partially supported by the US National Science Foundation grants DMS-1720001 and DMS-2120413. Huanhuan Yang was supported in part by the National Natural Science Foundation of China under Grant 11801348, the key research projects of general universities in Guangdong Province (Grant No. 2019KZDXM034), and the basic research and applied basic research projects in Guangdong Province (Projects of Guangdong, Hong Kong and Macao Center for Applied Mathematics, Grant No. 2020B1515310018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanhuan Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code Availability

Parts of the code are available upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Yang, H. Fast and Accurate Artificial Compressibility Ensemble Algorithms for Computing Parameterized Stokes–Darcy Flow Ensembles. J Sci Comput 94, 17 (2023). https://doi.org/10.1007/s10915-022-02069-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02069-2

Keywords

Navigation