Skip to main content
Log in

First-Order Positivity-Preserving Entropy Stable Scheme for the 3-D Compressible Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we extend the positivity-preserving, entropy stable first-order scheme developed for the one-dimensional compressible Navier–Stokes equations in Upperman et al. (J Comput Phys 466, 2022) to three spatial dimensions. The new first-order scheme is provably entropy stable, design-order accurate for smooth solutions, and guarantees the pointwise positivity of thermodynamic variables for 3-D compressible viscous flows. Similar to the 1-D counterpart, the proposed scheme for the 3-D Navier–Stokes equations is discretized on Legendre-Gauss-Lobatto grids used for high-order spectral collocation methods. The positivity of density is achieved by adding an artificial dissipation in the form of the first-order Brenner–Navier–Stokes diffusion operator. Another distinctive feature of the proposed scheme is that the Navier–Stokes viscous terms are discretized by high-order spectral collocation summation-by-parts operators. To eliminate time step stiffness caused by the high-order approximation of the viscous terms and the temperature positivity constraint, the velocity and temperature limiters developed for the 1-D compressible Navier–Stokes equations in Upperman et al. (J. Comput. Phys., 466, 2022) are generalized to three spatial dimensions. These limiters bound the magnitude of velocity and temperature gradients and preserve the entropy stability and positivity properties of the baseline scheme. Numerical results are presented to demonstrate design-order accuracy and positivity-preserving properties of the new first-order scheme for 2-D and 3-D inviscid and viscous flows with strong shocks and contact discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Upperman, J., Yamaleev, N.K.: Positivity-preserving entropy stable schemes for the 1-D compressible Navier-Stokes equations: First-order approximation. J. Comput. Phys. 466, (2022)

  2. Brenner, H.: Navier–Stokes revisited. Phys. A 349, 60–132 (2005)

    Article  MathSciNet  Google Scholar 

  3. Upperman, J., Yamaleev, N.K.: Positivity-preserving entropy stable schemes for the 1-D compressible Navier–Stokes equations: High-order flux limiting. J. Comput. Phys. 466, (2022)

  4. Svärd, M.: A convergent numerical scheme for the compressible Navier–Stokes equations. SIAM J. Numer. Anal. 54(3), (2016)

  5. Grapsas, D., Herbin, R., Kheriji, W., Latché, J.-C.: An unconditionally stable staggered pressure correction scheme for the compressible Navier–Stokes equations. SMAI J. Comput. Math. 2, 51–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guermond, J.-L., Maier, M., Popov, B., Tomas, I.: Second-order invariant domain preserving approximation of the compressible Navier–Stokes equations. arXiv:2009.06022v1, (2020)

  7. Zhang, X.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier–Stokes equations. J. Comput. Phys. 328, 301–343 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces. SIAM J. Sci. Comput. 36(5), (2014)

  9. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Parsani, M., Svärd, M., Yamaleev, N.K.: Entropy stable summation-by-parts formulations for compressible computational fluid dynamics. Handb. Numer. Anal. 17, 495–524 (2016)

    MathSciNet  Google Scholar 

  10. Upperman, Johnathon, Yamaleev, Nail K..: Entropy stable artificial dissipation based on Brenner regularization of the Navier–Stokes equations. J. Comput. Phys. 393, 74–91 (2019). https://doi.org/10.1016/j.jcp.2019.05.006

    Article  MathSciNet  MATH  Google Scholar 

  11. Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17, 1030–1037 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yamaleev, N.K., Del Rey Fernandez, D.C., Lou, J., Carpenter, M.H.: Entropy stable spectral collocation schemes for the 3-D Navier–Stokes equations on dynamic unstructured grids. J. Comput. Phys. 399, 108897 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feireisl, E., Vasseur, A.: New perspectives in fluid dynamics: Mathematical analysis of a model proposed by Howard Brenner. Adv. Math. Fluid Mech. 153–179 (2009)

  14. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yamaleev, N.K., Carpenter, M.H.: A family of fourth-order entropy stable non-oscillatory spectral collocation schemes for the 1-D Navier–Stokes equations. J. Comput. Phys. 331, 90–107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, R.C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer 12, 451–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14(5), 1252–1286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Merriam, M.L.: An Entropy-Based Approach to Nonlinear Stability. Tech. report TM 101086, NASA, (1989)

  21. Fisher, T.C.: High-order L2 stable multi-domain finite difference method for compressible flows, Ph.D. thesis, Purdue University

  22. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks. J. of Comput. Phys. 228, 5410–5436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fernandez, P., Nguyen, N., Peraire, J.: A physics-based shock capturing method for large-eddy simulation, arXiv:1806.06449, (2018)

  24. Dalcin, L., Rojas, D., Zampini, S., Fernandez, D.C.D.R., Carpenter, M.H., Parsani, M.: Conservative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes equations: Adiabatic wall and heat entropy transfer. J. Comput. Phys. 397, 108775 (2019)

  25. Peng, N., Yang, Y.: Effects of the Mach number on the evolution of vortex-surface fields in compressible Taylor-Green flows. Phys. Rev. Fluids 3(1), (2018)

  26. Yamaleev, N.K., Upperman, J.: High-order positivity-preserving entropy stable schemes for the 3-D compressible Navier–Stokes equations, J. Sci. Comp. (2021). arXiv: 2111.08815

Download references

Funding

The first author was supported by the Virginia Space Grant Consortium Graduate STEM Research Fellowship and the Science, Mathematics and Research for Transformation (SMART) Scholarship. The second author acknowledges the support from Army Research Office through grant W911NF-17-0443.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nail K. Yamaleev.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upperman, J., Yamaleev, N.K. First-Order Positivity-Preserving Entropy Stable Scheme for the 3-D Compressible Navier–Stokes Equations. J Sci Comput 94, 18 (2023). https://doi.org/10.1007/s10915-022-02062-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02062-9

Keywords

Mathematics Subject Classification

Navigation