Skip to main content
Log in

A Multifidelity Monte Carlo Method for Realistic Computational Budgets

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A method for the multifidelity Monte Carlo (MFMC) estimation of statistical quantities is proposed which is applicable to computational budgets of any size. Based on a sequence of optimization problems each with a globally minimizing closed-form solution, this method extends the usability of a well known MFMC algorithm, recovering it when the computational budget is large enough. Theoretical results verify that the proposed approach is at least as optimal as its namesake and retains the benefits of multifidelity estimation with minimal assumptions on the budget or amount of available data, providing a notable reduction in variance over simple Monte Carlo estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets utilized during the current study were generated randomly with seed 2 according to the parameters in Algorithm 2 and the specifications in the text.

References

  1. Cubasch, U., Santer, B., Hellbach, A., Hegerl, G., Höck, H., Maier-Reimer, E., Mikolajewicz, U., Stössel, A., Voss, R.: Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model. Clim. Dyn. 10(1), 1–19 (1994)

    Article  Google Scholar 

  2. Forrester, A.I., Sóbester, A., Keane, A.J.: Multi-fidelity optimization via surrogate modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2088), 3251–3269 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Gjerstad, K.I., Stamnes, J.J., Hamre, B., Lotsberg, J.K., Yan, B., Stamnes, K.: Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system. Appl. Opt. 42(15), 2609–2622 (2003)

    Article  Google Scholar 

  4. Gruber, A., Gunzburger, M., Ju, L., Wang, Z.: A comparison of neural network architectures for data-driven reduced-order modeling. Comput. Methods Appl. Mech. Eng. 393, 114764 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gruber, A., Lan, R., Gunzburger, M., Ju, L., Wang, Z.: Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate modeling (to appear) (2022)

  6. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  7. Hong, Y., Hsu, K.l., Moradkhani, H., Sorooshian, S.: Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resources Res. 42(8), W08421 (2006)

  8. Khodabakhshi, P., Willcox, K.E., Gunzburger, M.: A multifidelity method for a nonlocal diffusion model. Appl. Math. Lett. 121, 107361 (2021). https://doi.org/10.1016/j.aml.2021.107361

    Article  MathSciNet  MATH  Google Scholar 

  9. Konrad, J., Farcaş, I.G., Peherstorfer, B., Di Siena, A., Jenko, F., Neckel, T., Bungartz, H.J.: Data-driven low-fidelity models for multi-fidelity Monte Carlo sampling in plasma micro-turbulence analysis. J. Comput. Phys. 451, 110898 (2022). https://doi.org/10.1016/j.jcp.2021.110898

    Article  MathSciNet  MATH  Google Scholar 

  10. Law, F., Cerfon, A.J., Peherstorfer, B.: Accelerating the estimation of collisionless energetic particle confinement statistics in stellarators using multifidelity Monte Carlo. Nuclear Fus. (2021)

  11. Leary, S.J., Bhaskar, A., Keane, A.J.: A knowledge-based approach to response surface modelling in multifidelity optimization. J. Global Optim. 26(3), 297–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Leathers, R.A., Downes, T.V., Davis, C.O., Mobley, C.D.: Monte Carlo radiative transfer simulations for ocean optics: a practical guide. Tech. rep, Naval Research Lab Washington Dc Applied Optics Branch (2004)

  13. Mishra, S., Schwab, C., Sukys, J.: Multilevel Monte Carlo finite volume methods for shallow water equations with uncertain topography in multi-dimensions. SIAM J. Sci. Comput. 34(6), B761–B784 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Narayan, A., Gittelson, C., Xiu, D.: A stochastic collocation algorithm with multifidelity models. SIAM J. Sci. Comput. 36(2), A495–A521 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ng, L.W.T., Willcox, K.E.: Multifidelity approaches for optimization under uncertainty. Int. J. Numer. Methods Eng. 100(10), 746–772 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Patsialis, D., Taflanidis, A.A.: Multi-fidelity Monte Carlo for seismic risk assessment applications. Struct. Saf. 93, 102129 (2021). https://doi.org/10.1016/j.strusafe.2021.102129

    Article  Google Scholar 

  17. Pauli, S., Arbenz, P.: Determining optimal multilevel Monte Carlo parameters with application to fault tolerance. Comput. Math. Appl. 70(11), 2638–2651 (2015). https://doi.org/10.1016/j.camwa.2015.07.011 (Numerical Methods for Scientific Computations and Advanced Applications)

  18. Peherstorfer, B., Gunzburger, M., Willcox, K.: Convergence analysis of multifidelity Monte Carlo estimation. Numer. Math. 139(3), 683–707 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peherstorfer, B., Marzouk, Y.: A transport-based multifidelity preconditioner for Markov chain Monte Carlo. Adv. Comput. Math. 45(5), 2321–2348 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peherstorfer, B., Willcox, K., Gunzburger, M.: Optimal model management for multifidelity Monte Carlo estimation. SIAM J. Sci. Comput. 38(5), A3163–A3194 (2016). https://doi.org/10.1137/15M1046472

    Article  MathSciNet  MATH  Google Scholar 

  21. Peherstorfer, B., Willcox, K., Gunzburger, M.: Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev. 60(3), 550–591 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tomassini, L., Reichert, P., Knutti, R., Stocker, T.F., Borsuk, M.E.: Robust Bayesian uncertainty analysis of climate system properties using Markov chain Monte Carlo methods. J. Clim. 20(7), 1239–1254 (2007)

    Article  Google Scholar 

Download references

Funding

This work is partially supported by U.S. Department of Energy under Grants DE-SC0020270, DE-SC0020418, and DE-SC0021077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Gruber.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruber, A., Gunzburger, M., Ju, L. et al. A Multifidelity Monte Carlo Method for Realistic Computational Budgets. J Sci Comput 94, 2 (2023). https://doi.org/10.1007/s10915-022-02051-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02051-y

Keywords

Mathematics Subject Classification

Navigation