Skip to main content
Log in

An Unfitted Finite Element Method by Direct Extension for Elliptic Problems on Domains with Curved Boundaries and Interfaces

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose and analyze an unfitted finite element method of arbitrary order for solving elliptic problems on domains with curved boundaries and interfaces. The approximation space on the whole domain is obtained by the direct extension of the finite element space defined on interior elements, in the sense that there is no degree of freedom locating in boundary/interface elements. We apply a non-symmetric bilinear form and the boundary/jump conditions are imposed in a weak sense in the scheme. The method is shown to be stable without any mesh adjustment or any special stabilization. The optimal convergence rate under the energy norm is derived, and \(O(h^{-2})\)-upper bounds of the condition numbers are shown for the final linear systems. Numerical results in both two and three dimensions are presented to illustrate the accuracy and the robustness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Areias, P.M.A., Belytschko, T.: Letter to the editor: A comment on the article: “A finite element method for the simulation of strong and weak discontinuities in solid mechanics” [Comput. Methods Appl. Mech. Engrg. 193 (2004)(33-35), 3523–3540; mr2075053] by Hansbo, A., Hansbo, P. Comput. Methods Appl. Mech. Engrg. 195 (2006)(9-12), 1275–1276

  3. Ayuso de Dios, B., Brezzi, F., Havle, O., Marini, L.D.: \(L^2\)-estimates for the DG IIPG-0 scheme. Numer. Methods Partial Diff. Equ. 28(5), 1440–1465 (2012)

    MATH  Google Scholar 

  4. Babuška, I., Banerjee, U.: Stable generalized finite element method (SGFEM). Comput. Methods Appl. Mech. Eng. 201(204), 91–111 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Badia, S., Verdugo, F., Martín, A.: The aggregated unfitted finite element method for elliptic problems. Comput. Methods Appl. Mech. Eng. 336, 533–553 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Belytschko, T., Gracie, R., Ventura, G.: A review of extended/generalized finite element methods for material modeling. Modelling Simul. Mater. Sci. Eng. 17(4), 043001 (2009)

    Google Scholar 

  7. Bordas, S.P.A., Burman, E., Larson, M.G., Olshanskii, M.A. (eds.), Geometrically unfitted finite element methods and applications. In: Lecture Notes in Computational Science and Engineering. Springer, Cham, 2017, Held (2016)

  8. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Google Scholar 

  9. Burman, E.: Ghost penalty. C. R. Math. Acad. Sci. Paris 348(21–22), 1217–1220 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Burman, E., Cicuttin, M., Delay, G., Ern, A.: An unfitted hybrid high-order method with cell agglomeration for elliptic interface problems. SIAM J. Sci. Comput. 43(2), A859–A882 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62(4), 328–341 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Burman, E., Hansbo, P.: Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem. ESAIM Math. Model. Numer. Anal. 48(3), 859–874 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Burman, E., Hansbo, P., Larson, M.G., Massing, A.: A stable cut finite element method for partial differential equations on surfaces: the Helmholtz-Beltrami operator. Comput. Methods Appl. Mech. Eng. 362, 112803, 21 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Cui, T., Leng, W., Liu, H., Zhang, L., Zheng, W.: High-order numerical quadratures in a tetrahedron with an implicitly defined curved interface. ACM Trans. Math. Softw. (2019), 46(1), 1–18 (2019)

  16. de Prenter, F., Lehrenfeld, C., Massing, A.: A note on the stability parameter in Nitsche’s method for unfitted boundary value problems. Comput. Math. Appl. 75(12), 4322–4336 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Dolejší, V., Havle, O.: The \(L^2\)-optimality of the IIPG method for odd degrees of polynomial approximation in 1D. J. Sci. Comput. 42(1), 122–143 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Fries, T.-P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. In: Springer-Verlag, Berlin, 1986

  20. Gürkan, C., Massing, A.: A stabilized cut discontinuous Galerkin framework for elliptic boundary value and interface problems. Comput. Methods Appl. Mech. Eng. 348, 466–499 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Gürkan, C., Massing, A.: A stabilized cut discontinuous Galerkin framework for elliptic boundary value and interface problems. Comput. Methods Appl. Mech. Eng. 348, 466–499 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Gürkan, C., Sticko, S., Massing, A.: Stabilized cut discontinuous Galerkin methods for advection-reaction problems. SIAM J. Sci. Comput. 42(5), A2620–A2654 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Guzmán, J., Olshanskii, M.: Inf-sup stability of geometrically unfitted Stokes finite elements. Math. Comp. 87(313), 2091–2112 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Guzmán, J., Rivière, B.: Sub-optimal convergence of non-symmetric discontinuous Galerkin methods for odd polynomial approximations. J. Sci. Comput. 40(1–3), 273–280 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Han, Y., Chen, H., Wang, X., Xie, X.: EXtended HDG methods for second order elliptic interface problems. J. Sci. Comput. 84(1), 29 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47–48), 5537–5552 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191(17–18), 1895–1908 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Hansbo, P., Larson, M.G., Zahedi, S.: A cut finite element method for a Stokes interface problem. Appl. Numer. Math. 85, 90–114 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Huang, P., Wu, H., Xiao, Y.: An unfitted interface penalty finite element method for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 323, 439–460 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Johansson, A., Larson, M.G.: A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary. Numer. Math. 123(4), 607–628 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Kellogg, R.B.: Higher order singularities for interface problems, The mathematical foundations of the finite element method with applications to partial differential equations. In: Proc. Sympos., Univ. Maryland, Baltimore, Md., pp. 589–602 (1972). MR 0433926

  32. Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21(4), 397–431 (1976)

    MathSciNet  MATH  Google Scholar 

  33. Kramer, R., Bochev, P., Siefert, C., Voth, T.: An extended finite element method with algebraic constraints (XFEM-AC) for problems with weak discontinuities. Comput. Methods Appl. Mech. Eng. 266, 70–80 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Larson, M.G., Niklasson, A.J.: Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case. Numer. Math. 99(1), 113–130 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Lehrenfeld, C.: High order unfitted finite element methods on level set domains using isoparametric mappings. Comput. Methods Appl. Mech. Eng. 300, 716–733 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Lehrenfeld, C., Reusken, A.: Analysis of a high-order unfitted finite element method for elliptic interface problems. IMA J. Numer. Anal. 38(3), 1351–1387 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Li, K., Atallah, N.-M., Main, G.-A., Scovazzi, G.: The shifted interface method: a flexible approach to embedded interface computations. Int. J. Numer. Methods Eng. 121(3), 492–518 (2020)

    MathSciNet  Google Scholar 

  38. Li, R., Yang, F.: A discontinuous Galerkin method by patch reconstruction for elliptic interface problem on unfitted mesh. SIAM J. Sci. Comput. 42(2), A1428–A1457 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Li, Z.: The immersed interface method using a finite element formulation. Appl. Numer. Math. 27(3), 253–267 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53(2), 1121–1144 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Main, A., Scovazzi, G.: The shifted boundary method for embedded domain computations. Part I: poisson and Stokes problems. J. Comput. Phys. 372, 972–995 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Massing, A., Larson, M.G., Logg, A., Rognes, M.E.: A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sci. Comput. 61(3), 604–628 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Neiva, E., Badia, S.: Robust and scalable \(h\)-adaptive aggregated unfitted finite elements for interface elliptic problems. Comput. Methods Appl. Mech. Eng. 380, 26 (2021)

    MathSciNet  MATH  Google Scholar 

  44. Saye, R.I.: High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles. SIAM J. Sci. Comput. 37(2), A993–A1019 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Strouboulis, T., Babuška, I., Copps, K.: The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181(1–3), 43–69 (2000)

    MathSciNet  MATH  Google Scholar 

  46. Wei, Z., Li, C., Zhao, S.: A spatially second order alternating direction implicit (ADI) method for solving three dimensional parabolic interface problems. Comput. Math. Appl. 75(6), 2173–2192 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Wu, H., Xiao, Y.: An unfitted \(hp\)-interface penalty finite element method for elliptic interface problems. J. Comput. Math. 37(3), 316–339 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Zhou, Y.C., Wei, G.W.: On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method. J. Comput. Phys. 219(1), 228–246 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee sincerely for the constructive comments that improve the quality of this paper. This work was supported by National Natural Science Foundation of China (12201442, 12171340, 11971041) and National Key R &D Program of China (2020YFA0714000).

Funding

The authors declare that they have no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Xie.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Xie, X. An Unfitted Finite Element Method by Direct Extension for Elliptic Problems on Domains with Curved Boundaries and Interfaces. J Sci Comput 93, 75 (2022). https://doi.org/10.1007/s10915-022-02035-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02035-y

Keywords

Navigation