Skip to main content
Log in

A Posteriori Error Control and Adaptivity for the IMEX BDF2 Method for PIDEs with Application to Options Pricing Models

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study a posteriori error estimates of the IMEX BDF2 scheme for time discretizations of solving parabolic partial integro-differential equations, which describe the jump-diffusion option pricing model in finance. Because of the initial singularities of the solution which is due to the nonsmoothness of the payoff function, a posteriori error control and adaptivity will be crucial in solving numerically this type of equations. To derive optimal order a posteriori error estimates, quadratic reconstructions for the IMEX BDF2 method are introduced. By using these continuous, piecewise time reconstructions, the upper and lower error bounds depending only on the discretization parameters and the data of the problems are derived. Based on these a posteriori error estimates, we further develop a time adaptive algorithm. The numerical implementations are performed with both nonuniform partitions and adaptivity in time. The adaptive algorithm reduce the computational cost substantially and provides efficient error control for the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

The code can be made available on reasonable request.

References

  1. Achdou, Y., Pironneau, O.: Computational methods for option pricing. Front. Appl. Math. 30, SIAM, Philadelphia, (2005)

  2. Akrivis, G., Crouzeix, M., Makridadis, C.: Implicit–Explicit Multistep Finite Element Methods for Nonlinear Parabolic Equations. Report 95-22, University of Rennes (1995)

  3. Akrivis, G., Crouzeix, M., Chatzipantelidis, P.: A posteriori error estimates for the two-step backward differentiation formula method for parabolic equations. SIAM J. Numer. Anal. 48, 109–132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent PDE’s. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bänsch, E., Brenner, A.: A posteriori error estimates for pressure-correction schemes. SIAM J. Numer. Anal. 54, 2323–2358 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT 38, 644–662 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boen, L., i’nt Hout, K.J.: Operator splitting schemes for the two-asset Merton jump-diffusion model. J. Comp. Appl. Math. 38, 112309 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Briani, M., Natalini, R., Russo, G.: Implicit–explicit numerical schemes for jump-diffusion processes. Calcolo 44, 33–57 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bänsch, E., Bates, D.S.: Jumps and stochastic volatility: exchange rate processes implicit deutsche mark options. Rev. Financ. Stud. 9, 637–654 (1996)

    Google Scholar 

  11. Chen, F., Shen, J., Xu, H.J.: A new spectral element method for pricing European options under the Black–Scholes and Merton jump diffusion Models. J. Sci. Comput. 52, 499–518 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Y.Z., Xiao, A.G., Wang, W.S.: An IMEX-BDF2 compact scheme for pricing options under regime-switching jump-diffusion models. Math. Meth. Appl. Sci. 42, 2646–2663 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crouzeix, M.: Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35, 257–276 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  15. Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump diffusion and exponential lévy models. SIAM J. Numer. Anal. 43, 1596–1624 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. d’Halluin, Y., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25, 87–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Düring, B., Pitkin, A.: High-order compact finite difference scheme for option pricing in stochastic volatility jump models. J. Comput. Appl. Math. 355, 201–217 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feng, F., Linetsky, V.: Pricing options in jump-diffusion models: an extrapolation approach. Oper. Res. 56, 304–325 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frank, J., Hundsdorfer, W., Verwer, J.G.: On the stability of implicit–explicit linear multistep methods. Appl. Numer. Math. 25, 193–207 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gaviraghi, B., Annunziato, M., Borzía, A.: Analysis of splitting methods for solving a partial integro-differential Fokker–Planck equations. Appl. Math. Comput. 294, 1–17 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd edn. Springer-Verlag, Berlin (2000)

    MATH  Google Scholar 

  22. in’t Hout, K.J.: Numerical Partial Differential Equations in Finance Explained: An Introduction to Computational Finance. Springer Nature, London (2017)

    Book  Google Scholar 

  23. in’t Hout, K.J., Toivanen, J.: ADI schemes for valuing european options under the bates model. Appl. Numer. Math. 130, 143–156 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kadalbajoo, M.K., Tripathi, L.P., Kumar, A.: Second order accurate IMEX methods for option pricing under Merton and Kou jump-diffusion model. J. Sci. Comput. 65, 979–1024 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kadalbajoo, M.K., Kumar, A., Tripathi, L.P.: An efficient numerical method for pricing options under jump diffusion model. Int. J. Adv. Eng. Sci. Appl. Math. 7, 114–123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kadalbajoo, M.K., Kumar, A., Tripathi, L.P.: A radial basis function based implicit–explicit method for option pricing under jump-diffusion models. Appl. Numer. Math. 110, 159–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kadalbajoo, M.K., Tripathi, L.P., Kumar, A.: An error analysis of a finite element method with IMEX-time semidiscretizations for some partial integro-differential inequalities arising in the pricing of American options. SIAM J. Numer. Anal. 55, 869–891 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kwon, Y., Lee, Y.: A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal. 49, 2598–2617 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Larsson, E., Åhlander, K., Hall, A.: Multi-dimensional option pricing using radial basis functions and the generalized Fourier transform. J. Comput. Appl. Math. 222(1), 175–192 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lee, S.T., Sun, H.W.: Fourth order compact scheme with local mesh refinement for option pricing in jump-diffusion model. Numer. Methods Part. Differ. Equ. 28, 1079–1098 (2012)

    Article  MathSciNet  Google Scholar 

  31. Lozinski, A., Picasso, M., Prachittham, V.: An anisotropic error estimator for the Crank–Nicolson method: application to a parabolic problem. SIAM J. Sci. Comput. 31, 2757–2783 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Matache, A.M., Schwab, C., Wihler, T.P.: Fast Numerial Solution of Parabolic Integro-Differential Equations with Applications in Finance. IMA Preprint Series 1954 University of Minnesota, (2004)

  33. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. Financ. Econ. 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  34. Nochetto, R.H., Savaré, G., Verdi, C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53, 525–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pindza, E., Patidar, K.C., Ngounda, E.: Robust spectral method for numerical valuation of European options under Merton’s jump-diffusion model. Numer. Methods Part. Differ. Equ. 30, 1169–1188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rad, J.A., Parand, K.: Pricing American options under jump-diffusion models using local weak form meshless techniques. Inter. J. Comput. Math. 94, 1–27 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Rad, J.A., Parand, K.: Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method. Appl. Numer. Math. 115, 252–274 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ruuth, S.J.: Implicit-explicit methods for reaction–diffusion problems in pattern-formation. J. Math. Biol. 34, 148–176 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Safdari, A., Heryudono, A., Larsson, E.: A radial basis function partition of unity collocation method for convection–diffusion equations arising in financial applications. J. Sci. Comput. 64, 341–367 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Salmi, S., Toivanen, J.: IMEX schemes for pricing options under jump-diffusion models. Appl. Numer. Math. 84, 33–45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Salmi, S., Toivanen, J., von Sydow, L.: An IMEX-scheme for pricing options under stochastic volatility models with jumps. SIAM J. Sci. Comput. 36, B817–B834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shcherbakov, V., Larsson, E.: Radial basis function partition of unity methods for pricing vanilla basket options. Comput. Math. Appl. 71, 185–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. von Sydow, L., Toivane, J., Zhang, C.: Adaptive finite differences and IMEX time-stepping to price options under Bates model. Inter. J. Comput. Math. 92, 2515–2529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tavella, D., Randall, C.: Pricing Financial Instruments: The Finite Difference Method. Wiley, Chichester (2000)

    Google Scholar 

  45. Thomée, V.: Galerkin finite element methods for parabolic problems. second ed., In: Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin (2006)

  46. Varah, J.M.: Stability restrictions on second order, three-level finite-difference schemes for parabolic equations. SIAM J. Numer. Anal. 17, 300–309 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  47. Verwer, J.G., Blom, J.G., Hundsdorfer, W.: An implicit-explicit approach for atmospheric transport-chemistry problems. Appl. Numer. Math. 20, 191–209 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, D., Ruuth, S.J.: Variable step-size implicit-explicit linear multistep methods for time-dependent partial differential equations. J. Comput. Math. 26, 838–855 (2008)

    MathSciNet  MATH  Google Scholar 

  49. Wang, W.S., Chen, Y.Z.: Fast numerical valuation of options with jump under Merton’s models. J. Comput. Appl. Math. 318, 79–92 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, W.S., Chen, Y.Z., Fang, F.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57, 1289–1317 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, W.S., Mao, M.L., Huang, Y.: Optimal a posteriori estimators for the variable step-size BDF2 method for linear parabolic equations. J. Comput. Appl. Math. 413, 114306 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, W.S., Mao, M.L., Wang, Z.: Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equation. Adv. Comput. Math. 47, 1–28 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang, W.S., Mao, M.L., Wang, Z.: An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function. ESAIM Math. Model. Numer. Anal. 55, 913–938 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wilmott, P., Dewynee, J., Howison, S.: Option Pricing: Mathemematical Models and Computation. Oxford Financial Press, Oxford (1993)

    Google Scholar 

  55. Zhang, K., Wang, S.: A computational scheme for options under jump-diffusion processes. Inter. J. Numer. Anal. Model. 6, 110–123 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Zhang, X.L.: Numerical analysis of American option pricing in a jump-diffusion model. Math. Oper. Res. 22, 668–690 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for comments and suggestions that led to improvements in the presentation of this paper.

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 12271367, 11771060) and Shanghai Science and Technology Planning Projects (Grant No. 20JC1414200), and sponsored by Natural Science Foundation of Shanghai (Grant No. 20ZR1441200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wansheng Wang.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Ethical Approval

We have not submitted this manuscript anywhere, and it will not be submitted anywhere while it is under review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Mao, M. & Huang, Y. A Posteriori Error Control and Adaptivity for the IMEX BDF2 Method for PIDEs with Application to Options Pricing Models. J Sci Comput 93, 55 (2022). https://doi.org/10.1007/s10915-022-02013-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02013-4

Keywords

Mathematics Subject Classification

Navigation