Skip to main content
Log in

A New Tensor Multi-rank Approximation with Total Variation Regularization for Tensor Completion

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a novel tensor completion model which combines the Laplace function and an anisotropic total variation regularization. The Laplace function is utilized to approximate the tensor multi-rank, and the total variation regularization is added to improve the local piecewise smoothness and preserve the edges of the restored tensor data. An efficient alternating direction method of multipliers is proposed to tackle the tensor completion model, and its convergence theorem is also derived. Extensive experimental results on color images, videos, multispectral images and magnetic resonance imaging data show the efficiency and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Notes

  1. Available from: http://sipi.usc.edu/database/database.php.

  2. Available from: http://trace.eas.asu.edu/yuv/.

  3. Available from: https://www.cs.columbia.edu/CAVE/databases/multispectral/.

  4. Available from: https://brainweb.bic.mni.mcgill.ca/brainweb.

References

  1. Huang, L.-T., de Almeida, A.L., So, H.: Target estimation in bistatic MIMO radar via tensor completion. Signal Process. 120, 654–659 (2016)

    Article  Google Scholar 

  2. Vlasic, D., Brand, M., Pfister, H., Popovic, J.: Face transfer with multilinear models. ACM Trans. Graph. 24(3), 426–433 (2005)

    Article  Google Scholar 

  3. Zhao, Q., Zhang, L., Cichocki, A.: Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1751–1763 (2015)

    Article  Google Scholar 

  4. Chen, Y.-L., Hsu, C.-T., Liao, H.-Y.M.: Simultaneous tensor decomposition and completion using factor priors. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 577–591 (2013)

    Article  Google Scholar 

  5. Chan, S.H., Khoshabeh, R., Gibson, K.B., Gill, P.E., Nguyen, T.Q.: An augmented Lagrangian method for total variation video restoration. IEEE Trans. Image Process. 20(11), 3097–3111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Komodakis, N.: Image completion using global optimization, In: Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), pp. 442–452. (2006)

  7. Korah, T., Rasmussen, C.: Spatiotemporal inpainting for recovering texture maps of occluded building facades. IEEE Trans. Image Process. 16(9), 2262–2271 (2007)

    Article  MathSciNet  Google Scholar 

  8. Li, N., Li, B.: Tensor completion for on-board compression of hyperspectral images. In: Proceedings of 2010 IEEE International Conference on Image Processing, pp. 517–520. (2010)

  9. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hillar, Christopher J.., Lim, Lek-Heng.: Most tensor problems are NP-hard. J. ACM 60(6), 1–39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)

    Article  Google Scholar 

  12. Ji, T.-Y., Huang, T.-Z., Zhao, X.-L., Ma, T.-H., Deng, L.-J.: A non-convex tensor rank approximation for tensor completion. Appl. Math. Model. 48, 410–422 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, S., Fan, Q.: Robust Schatten-p norm based approach for tensor completion. J. Sci. Comput. 82(1), 1–23 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xu, Y., Hao, R., Yin, W., Su, Z.: Parallel matrix factorization for low-rank tensor completion. Inverse Probl. Imaging 9(2), 601–624 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shi, C., Huang, Z., Wan, L., Xiong, T.: Low-rank tensor completion based on log-det rank approximation and matrix factorization. J. Sci. Comput. 80(3), 1888–1912 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, X.-L., Ng, M.K., Zhao, X.-L.: Tensor factorization with total variation and Tikhonov regularization for low-rank tensor completion in imaging data. J. Math. Imaging Vis. 62(6), 900–918 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kilmer, M.E., Martin, C.D., Perrone, L.: A third-order generalization of the matrix SVD as a product of third-order tensors, Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4

  19. Braman, K.: Third-order tensors as linear operators on a space of matrices. Linear Algebra Appl. 433(7), 1241–1253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Martin, C.D., Shafer, R., Larue, B.: An order-p tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35(1), 474–490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kilmer, Misha E., Martin, Carla D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Semerci, O., Hao, N., Kilmer, M.E., Miller, E.L.: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography. IEEE Trans. Image Process. 23(4), 1678–1693 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Adv. Neural. Inf. Process. Syst. 22, 2080–2088 (2009)

    Google Scholar 

  24. Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3842–3849. (2014)

  25. Ji, T.-Y., Huang, T.-Z., Zhao, X.-L., Sun, D.-L.: A new surrogate for tensor multirank and applications in image and video completion, In: Proceedings of 2017 International Conference on Progress in Informatics and Computing (PIC), pp. 101–107. (2017)

  26. Xu, W.-H., Zhao, X.-L., Ji, T.-Y., Miao, J.-Q., Ma, T.-H., Wang, S., Huang, T.-Z.: Laplace function based nonconvex surrogate for low-rank tensor completion. Signal Process. Image Commun. 73, 62–69 (2019)

    Article  Google Scholar 

  27. He, W., Yuan, L., Yokoya, N.: Total-variation-regularized tensor ring completion for remote sensing image reconstruction, In: Proceedings of ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8603–8607. (2019)

  28. Wang, Y.-T., Zhao, X.-L., Jiang, T.-X., Deng, L.-J., Ma, T.-H., Zhang, Y.-T., Huang, T.-Z.: A total variation and group sparsity based tensor optimization model for video rain streak removal. Signal Process. Image Commun. 73, 96–108 (2019)

    Article  Google Scholar 

  29. Zhao, X.-L., Wang, W., Zeng, T.-Y., Huang, T.-Z., Ng, M.K.: Total variation structured total least squares method for image restoration. SIAM J. Sci. Comput. 35(6), 1304–1320 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, J., Huang, T.-Z., Selesnick, I.W., Lv, X.-G., Chen, P.-Y.: Image restoration using total variation with overlapping group sparsity. Inf. Sci. 295, 232–246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mei, J.-J., Dong, Y., Huang, T.-Z., Yin, W.: Cauchy noise removal by nonconvex ADMM with convergence guarantees. J. Sci. Comput. 74(2), 743–766 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Song, L., Du, B., Zhang, L., Zhang, L.: A low-rank total-variation regularized tensor completion algorithm, In: Proceedings of CCF Chinese Conference on Computer Vision, pp. 311–322. (2017)

  34. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2862–2869 (2014)

  35. Kang, Z., Peng, C., Cheng, Q.: Robust PCA via nonconvex rank approximation, In: Proceedings of 2015 IEEE International Conference on Data Mining, pp. 211–220. (2015)

  36. Kang, Z., Peng, C., Cheng, Q.: Top-n recommender system via matrix completion, In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, vol. 30(1), pp. 179–185. (2016)

  37. Fazel, M., Hindi, H., Boyd, S.P.: Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices, In: Proceedings of the 2003 American Control Conference, pp. 2156–2162. (2003)

  38. Nie, F., Wang, H., Cai, X., Huang, H., Ding, C.: Robust matrix completion via joint Schatten p-norm and lp-norm minimization, In: Proceedings of 2012 IEEE 12th International Conference on Data Mining, pp. 566–574. (2012)

  39. Chen, Y., Guo, Y., Wang, Y., Wang, D., Peng, C., He, G.: Denoising of hyperspectral images using nonconvex low rank matrix approximation. IEEE Trans. Geosci. Remote Sens. 55(9), 5366–5380 (2017)

    Article  Google Scholar 

  40. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2020)

    Article  Google Scholar 

  41. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Smith, R.A.: Matrix equation \(XA+BX=C\). SIAM J. Appl. Math. 16(1), 198–201 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lin, Z., Chen, M., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055

  45. Xu, Y., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with nonnegative factors. Front. Math. China 7(2), 365–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Oh, T.-H., Tai, Y.-W., Bazin, J.-C., Kim, H., Kweon, I.S.: Partial sum minimization of singular values in robust PCA: algorithm and applications. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 744–758 (2015)

    Article  Google Scholar 

  47. Li, X., Ye, Y., Xu, X.: Low-rank tensor completion with total variation for visual data inpainting. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, vol. 31(1), pp. 2210–2216. (2017)

  48. Jiang, F., Liu, X.-Y., Lu, H., Shen, R.: Anisotropic total variation regularized low-rank tensor completion based on tensor nuclear norm for color image inpainting, In: Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1363–1367. (2018)

  49. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and the reviewers for the constructive and helpful comments on the revision of this article. The authors would like to thank Prof. Qing-Wen Wang of Department of Mathematics, Shanghai University for helpful discussions on the tensor completion problem, which led to an improvement of the paper.

Funding

The work was supported by the National Natural Science Foundation of China (No. 12201149, 12261026), the Natural Science Foundation of Guangxi Province (No. 2017GXNSFBA198082) and the Innovation Project of GUET Graduate Education (No. 2021YCXS113, 2022YCXS147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Feng Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the National Natural Science Foundation of China (No. 12201149, 12261026), the Natural Science Foundation of Guangxi Province (No. 2017GXNSFBA198082) and the Innovation Project of GUET Graduate Education (No. 2021YCXS113, 2022YCXS147).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, SQ., Duan, XF. & Zhao, XL. A New Tensor Multi-rank Approximation with Total Variation Regularization for Tensor Completion. J Sci Comput 93, 61 (2022). https://doi.org/10.1007/s10915-022-02005-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02005-4

Keywords

Mathematics Subject Classification

Navigation