Skip to main content
Log in

Troubled-Cell Indication Using K-means Clustering with Unified Parameters

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In Zhu et al. (SIAM J Sci Comput 43: A3009–A3031, 2021), we proposed a new framework of troubled-cell indicator (TCI) using K-means clustering for the discontinuous Galerkin (DG) methods. However, there are two user-tunable parameters in the framework that depend on the polynomial degree of the solution space, the indication variable and even the test problem, which circumscribe the application of the framework. To overcome this drawback, we introduce two simple techniques in this paper: one is to modify the indication variables and the other is to apply a statistical normalization to the modified values. Coupled with four different indication variables, the modified framework is tested via the classical benchmark problems and produces close results under the same setting of the parameters. The discontinuities are overall well captured and the solutions are free of spurious oscillations. The numerical results demonstrate the effectiveness and flexibility of the modified framework and the success in unifying the parameters. Existing TCIs/limiters for the DG methods can be easily implemented into this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Code Availability

The custom codes generated during the current study are available from the corresponding author on reasonable request.

References

  1. Cockburn, B.: Discontinuous Galerkin methods. Z. Angew. Math. Mech. 11, 731–754 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feng, Y., Liu, T., Wang, K.: A characteristic-featured shock wave indicator for conservation laws based on training an artificial neuron. J. Sci. Comput. 83, 21 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fu, G., Shu, C.-W.: A new troubled-cell indicator for discontinuous Galerkin methods for hyperbolic conservation laws. J. Comput. Phys. 347, 305–327 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, Z., Wen, X., Don, W.-S.: Enhanced robustness of the hybrid compact-WENO finite difference scheme for hyperbolic conservation laws with multi-resolution analysis and Tukey’s boxplot method. J. Sci. Comput. 73, 736–752 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jain, A.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31, 651–666 (2010)

    Article  Google Scholar 

  9. Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lax, P.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lax, P., Liu, X.: Solution of two dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. MacQueen, J.: Some methods for clustering and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 281–297 (1967)

  13. Martinez, W., Martinez, A.: Computational Statistics Handbook with MATLAB, pp. 373–376. Chapman and Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  14. Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin mehtods using weighted essentially nonosillatory limiters. SIAM J. Sci. Comput. 27, 995–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qiu, J., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ray, D., Hesthaven, J.: An artificial neural network as a troubled-cell indicator. J. Comput. Phys. 367, 166–191 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ray, D., Hesthaven, J.: Detecting troubled-cells on two-dimensional unstructured grids using a neural network. J. Comput. Phys. 397, 108845 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MATH  Google Scholar 

  20. Sun, Z., Wang, S., Chang, L.-B., Xing, Y., Xiu, D.: Convolution neural network shock detector for numerical solution of conservation laws. Commun. Comput. Phys. 28, 2075–2108 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vuik, M., Ryan, J.: Automated parameters for troubled-cell indicators using outlier detection. SIAM J. Sci. Comput. 38, A84–A104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Z., Gao, Z., Wang, H., Zhang, Q., Zhu, H.: Three indication variables and their performance for the troubled-cell indicator using K-means clustering. Accepted, Adv. Appl. Math. Mech. (2021)

  24. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xu, R., Wunsch, D., II.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)

    Article  Google Scholar 

  26. Zhang, Q.: Adaptive discontinuous Galerkin finite element methods for two dimensional convection-diffusion equations (in Chinese). J. Numer. Methods Comput. Appl. 29, 56–64 (2008)

    MathSciNet  Google Scholar 

  27. Zhu, H., Han, W., Wang, H.: A generalization of a troubled-cell indicator to \(h\)-adaptive meshes for discontinuous Galerkin methods. Adv. Appl. Math. Mech. 12, 1224–1246 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhu, H., Qiu, J.: Adaptive Runge-Kutta discontinuous Galerkin methods using different indicators: One-dimensional case. J. Comput. Phys. 228, 6957–6976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, H., Qiu, J.: An \(h\)-adaptive RKDG method with troubled-cell indicator for two-dimensional hyperbolic conservation laws. Adv. Comput. Math. 39, 445–463 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, H., Wang, H., Gao, Z.: A new troubled-cell indicator for discontinuous Galerkin methods using K-means clustering. SIAM J. Sci. Comput. 43, A3009–A3031 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The research of Z. Gao is partially supported by the National Key Research and Development Program of China (2021YFF0704002) and Shandong Provincial Qingchuang Science and Technology Project (2019KJI002). The four authors, Z. Wang, Z. Gao, H. Wang and H. Zhu, want to acknowledge the funding support by NSFC Grant 11871443. The research of Q. Zhang is partially supported by NSFC Grant 12071214. The research of Z. Wang and H. Zhu is also partially sponsored by Postgraduate Research & Practice Innovation Program of Jiangsu Province under Grant No. KYCX20_0787.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Gao.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Wang, Z., Wang, H. et al. Troubled-Cell Indication Using K-means Clustering with Unified Parameters. J Sci Comput 93, 21 (2022). https://doi.org/10.1007/s10915-022-01987-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01987-5

Keywords

Mathematics Subject Classification

Navigation