Skip to main content
Log in

Accuracy-Enhancement of Discontinuous Galerkin Methods for PDEs Containing High Order Spatial Derivatives

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the accuracy-enhancement of discontinuous Galerkin (DG) methods for solving partial differential equations (PDEs) with high order spatial derivatives. It is well known that there are highly oscillatory errors for finite element approximations to PDEs that contain hidden superconvergence points. To exploit this information, a Smoothness-Increasing Accuracy-Conserving (SIAC) filter is used to create a superconvergence filtered solution. This is accomplished by convolving the DG approximation against a B-spline kernel. Previous theoretical results about this technique concentrated on first- and second-order equations. However, for linear higher order equations, Yan and Shu (J Sci Comput 17:27–47, 2002) numerically demonstrated that it is possible to improve the accuracy order to \(2k+1\) for local discontinuous Galerkin (LDG) solutions using the SIAC filter. In this work, we firstly provide the theoretical proof for this observation. Furthermore, we prove the accuracy order of the ultra-weak local discontinuous Galerkin (UWLDG) solutions could be improved to \(2k+2-m\) using the SIAC filter, where \(m=[\frac{n}{2}]\), n is the order of PDEs. Finally, we computationally demonstrate that for nonlinear higher order PDEs, we can also obtain a superconvergence approximation with the accuracy order of \(2k+1\) or \(2k+2-m\) by convolving the LDG solution and the UWLDG solution against the SIAC filter, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

EThe datasets generated during the current study are available from the corresponding author on reasonable request. They support our published claims and comply with field standards.

References

  1. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A272, 47–78 (1972)

    MathSciNet  MATH  Google Scholar 

  2. Bramble, J.H., Schatz, A.H.: Higher order local accuracy by averaging in the finite element method. Math. Comput. 31, 94–111 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, W., Huang, Q.: Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 72, 761–791 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, W., Liu, H.-L., Zhang, Z.: Superconvergence of the direct discontinuous Galerkin method for convection–diffusion equations. Numer. Methods Partial Differ. Equ. 33, 290–317 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, A., Cheng, Y., Liu, Y., Zhang, M.: Superconvergence of ultra-weak discontinuous Galerkin methods for the linear Schrödinger equation in one dimension. J. Sci. Comput. 82, 1–44 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  8. Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.: Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comput. 72, 577–606 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Curtis, S., Kirby, R.M., Ryan, J.K., Shu, C.-W.: Postprocessing for the discontinuous Galerkin method over nonuniform meshes. SIAM J. Sci. Comput. 30, 272–289 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  12. Ji, L., Xu, Y., Ryan, J.K.: Accuracy-enhancement of discontinuous Galerkin solutions for convection–diffusion equations in multiple-dimensions. Math. Comput. 81, 1929–1950 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ji, L., Xu, Y., Ryan, J.K.: Negative-order norm estimates for nonlinear hyperbolic conservation laws. J. Sci. Comput. 54, 531–548 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225, 935–988 (1999)

    Article  MATH  Google Scholar 

  15. Hunter, J.K., Vanden-Broeck, J.M.: Solitary and periodic gravity-capillary waves of finite amplitude. J. Fluid Mech. 134, 205–219 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X., Ryan, J.K., Kirby, R.M., Vuik, C.: Smoothness-Increasing Accuracy-Conserving (SIAC) filters for derivative approximations of discontinuous Galerkin (DG) solutions over nonuniform meshes and near boundaries. J. Comput. Appl. Math. 294, 275–296 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Y., Tao, Q., Shu, C.-W.: Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for time dependent fourth-order equation. ESAIM Math. Model. Numer. Anal. \((M^{2}AN)\)54, 1797–1820 (2020)

  18. Meng, X., Ryan, J.K.: Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement. Numer. Math. 136, 27–73 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meng, X., Ryan, J.K.: Divided difference estimates and accuracy enhancement of discontinuous Galerkin method for nonlinear symmetric systems of hyperbolic conservation laws. IMA J. Numer. Anal. 38, 125–155 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mirzaee, H., Ji, L., Ryan, J.K., Kirby, R.M.: Smoothness-Increasing Accuracy-Conserving (SIAC) postprocessing for discontinuous Galerkin solutions over structured triangular meshes. SIAM J. Numer. Anal. 49, 1899–1920 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mirzaee, H., King, J., Ryan, J.K., Kirby, R.M.: Smoothness-Increasing Accuracy-Conserving filters for discontinuous Galerkin solutions over unstructured triangular meshes. SIAM J. Sci. Comput. 35, A212–A230 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mirzaee, H., Ryan, J.K., Kirby, R.M.: Smoothness-Increasing Accuracy-Conserving (SIAC) filters for discontinuous Galerkin solutions: application to structured tetrahedral meshes. J. Sci. Comput. 58, 690–704 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ryan, J.K., Shu, C.-W., Atkins, H.: Extension of a post processing technique for the discontinuous Galerkin method for hyperbolic equations with application to an aeroacoustic problem. SIAM J. Sci. Comput. 26, 821–843 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ryan, J.K., Shu, C.-W.: On a one-sided post-processing technique for the discontinuous Galerkin methods. Methods Appl. Anal. 10, 295–308 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ryan, J.K., Cockburn, B.: Local derivative post-processing for the discontinuous Galerkin method. J. Comput. Phys. 228, 8642–8664 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tao, Q., Xia, Y.: Error estimates and post-processing of local discontinuous Galerkin method for Schrödinger equations. J. Comput. Appl. Math. 356, 198–218 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tao, Q., Xu, Y., Shu, C.-W.: An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives. Math. Comput. 89, 2753–2783 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tao, Q., Cao, W., Zhang, Z.: Superconvergence analysis of the ultra-weak local discontinuous Galerkin method for one dimensional linear fifth order equations. J. Sci. Comput. 88, 63 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. van Slingerland, P., Ryan, J.K., Vuik, C.: Position-dependent Smoothness-Increasing Accuracy-Conserving (SIAC) filtering for improving discontinuous Galerkin solutions. SIAM J. Sci. Comput 33, 802–825 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Walfisch, D., Ryan, J.K., Kirby, R.M., Haimes, R.: One-sided Smoothness-Increasing Accuracy-Conserving filtering for enhanced streamline integration through discontinuous fields. J. Sci. Comput. 38, 164–184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for three classes of nonlinear wave equations. J. Comput. Math. 22, 250–274 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection–diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196, 3805–3822 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Xu, Y., Shu, C.-W.: Optimal error estimates of the semi-discrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal 50, 79–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal 40, 769–791 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhou, L., Xu, Y., Zhang, Z., Cao, W.: Superconvergence of local discontinuous Galerkin method for one-dimensional linear Schrödinger equations. J. Sci. Comput. 73, 1290–1315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Research of Qi Tao is supported by the fellowship of China Postdoctoral Science Foundation, No: 2020TQ0030, 2021M700357. Research of Jennifer K. Ryan partially supported by Air Force Office of Scientific Research (AFOSR), Computational Mathematics program (Program Manager: Dr. Fariba Fahroo), under Grant Number FA 9550-20-1-0166 and the U.S. National Science Foundation under Grant Number DMS-2110745. Research of Yan Xu is supported by NSFC Grant No. 12071455.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Q., Ji, L., Ryan, J.K. et al. Accuracy-Enhancement of Discontinuous Galerkin Methods for PDEs Containing High Order Spatial Derivatives. J Sci Comput 93, 13 (2022). https://doi.org/10.1007/s10915-022-01967-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01967-9

Keywords

Navigation