Skip to main content
Log in

High Order Asymptotic Preserving Hermite WENO Fast Sweeping Method for the Steady-State \(S_{N}\) Transport Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose to combine the fifth-order Hermite weighted essentially non-oscillatory (HWENO) scheme and the fast sweeping method (FSM) for the solution of the steady-state \(S_{N}\) transport equation in the finite volume framework. It is well-known that the \(S_{N}\) transport equation asymptotically converges to a macroscopic diffusion equation in the limit of optically thick systems with small absorption and sources. Numerical methods which can preserve the asymptotic diffusion limit are referred to as asymptotic preserving methods. In the one-dimensional case, we provide the analysis to demonstrate the asymptotic preserving property of the high order finite volume HWENO method, by showing that its cell-edge and cell-average fluxes possess the thick diffusion limit. A hybrid strategy to compute the nonlinear weights in the HWENO reconstruction is introduced to save computational costs. Extensive one- and two-dimensional numerical experiments are performed to verify the accuracy, asymptotic preserving property and positivity of the proposed HWENO FSM. The proposed HWENO method can also be combined with the Diffusion Synthetic Acceleration algorithm to improve computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

All datasets generated during the current study are available from the corresponding author upon reasonable request.

Availability of data and material

Available upon reasonable request.

References

  1. Adams, M.L.: Discontinuous Finite Element Transport Solutions in Thick Diffusive Problems. Nucl. Sci. Eng. 137(3), 298–333 (2001)

    Google Scholar 

  2. Adams, M.L., Martin, W.R.: Diffusion synthetic acceleration of discontinuous finite element transport iterations. Nucl. Sci. Eng. 111(2), 145–167 (1992)

    Google Scholar 

  3. Alcouffe, R.E.: Diffusion synthetic acceleration methods for the diamond-differenced discrete-ordinates equations. Nucl. Sci. Eng. 64(2), 344–355 (1977)

    Google Scholar 

  4. Boué, M., Dupuis, P.: Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control. SIAM J. Numer. Anal. 36(3), 667–695 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Byambaakhuu, T., Wang, D., Xiao, S.: A Coarse-Mesh Diffusion Synthetic Acceleration Method with Local hp Adaptation for Neutron Transport Calculations. Nucl. Sci. Eng. 192(2), 208–217 (2018)

    Google Scholar 

  6. Börgers, C., Larsen, E.W., Adams, M.L.: The asymptotic diffusion limit of a linear discontinuous discretization of a two-dimensional linear transport equation. J. Comput. Phys. 98(2), 285–300 (1992)

    MathSciNet  MATH  Google Scholar 

  7. Chen, S.: Fixed-point fast sweeping WENO methods for steady-state solution of scalar hyperbolic conservation laws. Int. J. Numer. Anal. Model 11(1), 117–130 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Chen, W., Chou, C.-S., Kao, C.-Y.: Lax-Friedrichs fast sweeping methods for steady-state problems for hyperbolic conservation laws. J. Comput. Phys. 234, 452–471 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Carlson, B.G., Lathrop, K.D.: Computing methods in reactor physics. Gordon and Breach, New York (1968)

    Google Scholar 

  10. Castor, J.I.: Comparison of the Errors of the Wilson and Feautrier Schemes for Differencing the Equation of Transfer as Applied to a Class of Simple Model Problems. Lawrence Livermore National Laboratory memorandum (Jan. 29, 1982) and addendum (Feb. 2, 1982), (1982)

  11. Godunov, S., Bohachevsky, I.: Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics. Math. Sbornik 47(3), 271–306 (1959)

    Google Scholar 

  12. Guermond, J.L., Kanschat, G.: Asymptotic analysis of upwind discontinuous Galerkin approximation of the radiative transport equation in the diffusive limit. SIAM J. Numer. Anal. 48(1), 53–78 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Habetler, G.J., Matkowsky, B.J.: Uniform asymptotic expansions in transport theory with small mean free paths, and the diffusion approximation. J. Math. Phys. 16(4), 846–854 (1975)

    MathSciNet  MATH  Google Scholar 

  14. Huang, L., Shu, C.-W., Zhang, M.P.: Numerical boundary conditions for the fast sweeping high order WENO methods for solving the Eikonal equation. J. Comput. Math. 26(3), 336–346 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Jin, S.: Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Kao, C.-Y., Osher, S., Qian, J.: Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations. J. Comput. Phys. 196(1), 367–391 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Kopp, H.J.: Synthetic Method Solution of the Transport Equation. Nucl. Sci. Eng. 17(1), 65–74 (1963)

    Google Scholar 

  19. Larsen, E.W.: Diffusion theory as an asymptotic limit of transport theory for nearly critical systems with small mean free paths. Ann. Nucl. Energy 7(4–5), 249–255 (1980)

    MathSciNet  Google Scholar 

  20. Larsen, E.W.: The asymptotic diffusion limit of discretized transport problems. Nucl. Sci. Eng. 112(4), 336–346 (1992)

    Google Scholar 

  21. Larsen, E.W.: Unconditionally stable diffusion-synthetic acceleration methods for the slab geometry discrete ordinates equations, Part I: Theory. Nucl. Sci. Eng. 82(1), 47–63 (1982)

    Google Scholar 

  22. Larsen, E.W., Keller, J.B.: Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. 15(1), 75–81 (1974)

    MathSciNet  Google Scholar 

  23. Larsen, E.W., Morel, J.E.: Advances in discrete-ordinates methodology. Nuclear Computational Science, Springer, pp. 1–84 (2010)

  24. Larsen, E.W., Morel, J.E.: Asymptotic Solutions of Numerical Transport Problems in Optically Thick, Diffusive Regimes II. J. Comput. Phys. 83, 212–236 (1989)

    MathSciNet  MATH  Google Scholar 

  25. Larsen, E.W., Morel, J.E., Miller, W.F., Jr.: Asymptotic Solutions of Numerical Transport Problems in Optically Thick, Diffusive Regimes. J. Comput. Phys. 69(2), 283–324 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Larsen, E.W., Pomraning, G.C., Badham, V.C.: Asymptotic analysis of radiative transfer problems. J. Quant. Spectrosc. Radiat. Transf. 29(4), 285–310 (1983)

    Google Scholar 

  27. Li, F., Shu, C.-W., Zhang, Y.-T., Zhao, H.: Second order discontinuous Galerkin fast sweeping method for Eikonal equations. J. Comput. Phys. 227(17), 8191–8208 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Liu, H., Qiu, J.: Finite Difference Hermite WENO schemes for conservation laws. J. Sci. Comput. 63, 548–572 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Lund, C.M.: Radiation Transport in Numerical Astrophysics. nuas, 498, (1985)

  30. Lund, C.M., Wilson, J.R.: Some numerical methods for time-dependent multifrequency radiation transport calculations in one dimension. UCRL-84678, Lawrence Livermore National Laboratory, Livermore, CA, (1980)

  31. Luo, S.: A uniformly second order fast sweeping method for Eikonal equations. J. Comput. Phys. 241(10), 104–117 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Papanicolaou, G.C.: Asymptotic analysis of transport processes. Bull. New. Ser. Am. Math. Soc. 81(2), 330–392 (1975)

    MathSciNet  MATH  Google Scholar 

  33. Pitkäranta, J.: On the spatial differencing of the discrete ordinate neutron transport equation. SIAM J. Numer. Anal. 15(5), 859–869 (1978)

    MathSciNet  MATH  Google Scholar 

  34. Qian, J., Zhang, Y.-T., Zhao, H.-K.: A fast sweeping method for static convex Hamilton-Jacobi equations. J. Sci. Comput. 31(1), 237–271 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one dimensional case. J. Comput. Phys. 193(1), 115–135 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two-dimensional case. Comput. Fluids 34(6), 642–663 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Qiu, J., Shu, C.-W.: Hermite WENO schemes for Hamilton-Jacobi equations. J. Comput. Phys. 204(1), 82–99 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Reed, W.H.: The effectiveness of acceleration techniques for iterative methods in transport theory. Nucl. Sci. Eng. 45(3), 45–254 (1971)

    Google Scholar 

  39. Ren, Y., Xing, Y., Qiu, J.: High order finite difference Hermite WENO fast sweeping methods for static Hamilton-Jacobi equations. J. Comput. Math., In press

  40. Ren, Y., Xing, Y., Qiu, J.: High order finite difference Hermite WENO fixed-point fast sweeping method for static Hamilton-Jacobi equations, Commun. Comput. Phys. 31, 154–187 (2022)

    MathSciNet  MATH  Google Scholar 

  41. Tsai, R., Cheng, L.T., Osher, S., Zhao, H.-K.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)

    MathSciNet  MATH  Google Scholar 

  42. Wang, D.: On a Recent Theoretical Result on Diffusion Limits of Numerical Methods for the SN Transport Equation in Optically Thick Diffusive Regimes, The 26th International Conference on Transport Theory (ICTT-26) Sorbonne University, Paris, France, September, 23-27 (2019)

  43. Wang, D.: The Asymptotic Diffusion Limit of Numerical Schemes for the \(S_{N}\) Transport Equation. Nucl. Sci. Eng. 193(12), 1339–1354 (2019)

    Google Scholar 

  44. Wang, D., Byambaakhuu, T.: A New Analytical \(S_N\) Solution in Slab Geometry. Trans. Am. Nucl. Soc. 117(1), 757–760 (2017)

    Google Scholar 

  45. Wang, D., Byambaakhuu, T.: High Order Lax-Friedrichs WENO Fast Sweeping Methods for the \(S_N\) Neutron Transport Equation. Nucl. Sci. Eng. 193(9), 982–990 (2019)

    Google Scholar 

  46. Wu, L., Zhang, Y.-T.: A third order fast sweeping method with linear computational complexity for Eikonal equations. J. Sci. Comput. 62(1), 198–229 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Wu, L., Zhang, Y.-T., Zhang, S., Shu, C.-W.: High order fixed-point sweeping WENO methods for steady-state of hyperbolic conservation laws and its convergence study. Commun. Comput. Phys. 20(4), 835–869 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Xiong, T., Zhang, M.P., Zhang, Y.-T., Shu, C.-W.: Fast sweeping fifth order WENO scheme for static Hamilton-Jacobi equations with accurate boundary treatment. J. Sci. Comput. 45(1–3), 514–536 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, Y.-T., Chen, S., Li, F., Zhao, H.-K., Shu, C.-W.: Uniformly accurate discontinuous Galerkin fast sweeping methods for Eikonal equations. SIAM J. Sci. Comput. 33(4), 1873–1896 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, Y.-T., Zhao, H.-K., Chen, S.: Fixed-point iterative sweeping methods for static Hamilton-Jacobi equations. Methods Appl. Anal. 13(3), 299–320 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Zhang, Y.-T., Zhao, H.-K., Qian, J.: High Order fast sweeping methods for static Hamilton-Jacobi equations. J. Sci. Comput. 29(1), 25–56 (2006)

    MathSciNet  MATH  Google Scholar 

  52. Zhao, H.-K.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Zhao, Z., Qiu, J.: A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws. J. Comput. Phys. 417, 109583 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Zheng, F., Qiu, J.: Directly solving the Hamilton-Jacobi equations by Hermite WENO Schemes. J. Comput. Phys. 307, 423–445 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of Y. Xing is partially supported by the NSF grant DMS-1753581. The work of J. Qiu is partially supported by NSFC grant 12071392.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Y. Xing is partially supported by the NSF grant DMS-1753581.

The work of J. Qiu is partially supported by NSFC grant 12071392.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Xing, Y., Wang, D. et al. High Order Asymptotic Preserving Hermite WENO Fast Sweeping Method for the Steady-State \(S_{N}\) Transport Equations. J Sci Comput 93, 3 (2022). https://doi.org/10.1007/s10915-022-01965-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01965-x

Keywords

Navigation