Skip to main content
Log in

An Adaptive Dynamical Low Rank Method for the Nonlinear Boltzmann Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript


Efficient and accurate numerical approximation of the full Boltzmann equation has been a longstanding challenging problem in kinetic theory. This is mainly due to the high dimensionality of the problem and the complicated collision operator. In this work, we propose a highly efficient adaptive low rank method for the Boltzmann equation, concerning in particular the steady state computation. This method employs the fast Fourier spectral method (for the collision operator) and the dynamical low rank method to obtain computational efficiency. An adaptive strategy is introduced to incorporate the boundary information and control the computational rank in an appropriate way. Using a series of benchmark tests in 1D and 2D, we demonstrate the efficiency and accuracy of the proposed method in comparison to the full tensor grid approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This manuscript has no associated data.


  1. Bird, G.A.: Molecular gas dynamics and the direct simulation of gas flows. Molecular gas dynamics and the direct simulation of gas flows, (1994)

  2. Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. CRC Press, Boca Raton (2004)

    Google Scholar 

  3. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  Google Scholar 

  4. Cercignani, C.: Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations, vol. 21. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Ceruti, G., Kusch, J., Lubich, C.: A rank-adaptive robust integrator for dynamical low-rank approximation. BIT Numerical Mathematics, 1–26 (2022)

  6. Dektor, A., Rodgers, A., Venturi, D.: Rank-adaptive tensor methods for high-dimensional nonlinear pdes. J. Sci. Comput. 88(2), 1–27 (2021)

    Article  MathSciNet  Google Scholar 

  7. Deshpande, S. M.: Kinetic theory based new upwind methods for inviscid compressible flows. AIAA Paper 86-0275, (1986)

  8. Dimarco, G., Pareschi, L.: Numerical methods for kinetic equations. Acta Numer 23, 369–520 (2014)

    Article  MathSciNet  Google Scholar 

  9. Einkemmer, L.: A low-rank algorithm for weakly compressible flow. SIAM J. Sci. Comput. 41(5), A2795–A2814 (2019)

    Article  MathSciNet  Google Scholar 

  10. Einkemmer, L., Jingwei, H., Wang, Y.: An asymptotic-preserving dynamical low-rank method for the multi-scale multi-dimensional linear transport equation. J. Comput. Phys. 439, 110353 (2021)

    Article  MathSciNet  Google Scholar 

  11. Einkemmer, L., Jingwei, H., Ying, L.: An efficient dynamical low-rank algorithm for the Boltzmann-BGK equation close to the compressible viscous flow regime. SIAM J. Sci. Comput. 43, B1057–B1080 (2021)

    Article  MathSciNet  Google Scholar 

  12. Einkemmer, L., Lubich, C.: A low-rank projector-splitting integrator for the Vlasov-Poisson equation. SIAM J. Sci. Comput. 40(5), B1330–B1360 (2018)

    Article  MathSciNet  Google Scholar 

  13. Einkemmer, L., Lubich, C.: A quasi-conservative dynamical low-rank algorithm for the Vlasov equation. SIAM J. Sci. Comput. 41(5), B1061–B1081 (2019)

    Article  MathSciNet  Google Scholar 

  14. Gamba, I.M., Haack, J.R., Hauck, C.D., Hu, J.: A fast spectral method for the Boltzmann collision operator with general collision kernels. SIAM J. Sci. Comput. 39(4), B658–B674 (2017)

    Article  MathSciNet  Google Scholar 

  15. Harris, S.: An Introduction to the Theory of the Boltzmann Equation. Dover Publications, New York (2004)

    Google Scholar 

  16. Hesthaven, J., Pagliantini, C., Ripamonti, N.: Rank-adpative structure-preserving model reduction of Hamiltonian systems. ESAIM: M2AN. 56, 617–650 (2022)

  17. Hu, J.: Fourier spectral methods for nonlinear Boltzmann equations (in Chinese). Math. Numer. Sin. to appear (2022)

  18. Jaiswal, S., Alexeenko, A., Hu, J.: A discontinuous Galerkin fast spectral method for the full Boltzmann equation with general collision kernels. J. Comput. Phys. 378, 178–208 (2019)

    Article  MathSciNet  Google Scholar 

  19. Koch, O., Lubich, C.: Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29(2), 434–454 (2007)

    Article  MathSciNet  Google Scholar 

  20. Kusch, J., Einkemmer, L., Ceruti, G.: On the stability of robust dynamical low-rank approximations for hyperbolic problems. arXiv preprint arXiv:2107.07282 (2021)

  21. Kusch, J., Stammer, P.: A robust collision source method for rank adaptive dynamical low-rank approximation in radiation therapy. arXiv preprint arXiv:2111.07160 (2021)

  22. Lubich, C., Oseledets, I.V.: A projector-splitting integrator for dynamical low-rank approximation. BIT Numer. Math. 54(1), 171–188 (2014)

    Article  MathSciNet  Google Scholar 

  23. Mandal, J.C., Deshpande, S.M.: Kinetic flux vector splitting for Euler equations. Computers & fluids 23(2), 447–478 (1994)

    Article  MathSciNet  Google Scholar 

  24. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  25. Mouhot, C., Pareschi, L.: Fast algorithms for computing the Boltzmann collision operator. Math. Comp. 75, 1833–1852 (2006)

    Article  MathSciNet  Google Scholar 

  26. Mouhot, C., Pareschi, L.: Fast algorithms for computing the Boltzmann collision operator. Math. Comput. 75(256), 1833–1852 (2006)

    Article  MathSciNet  Google Scholar 

  27. Naldi, G., Pareschi, L., Toscani, G.: Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences. Springer Science & Business Media, Berlin (2010)

    Book  Google Scholar 

  28. Nanbu, K.: Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent gases. J. Phys. Soc. Jpn. 49(5), 2042–2049 (1980)

    Article  Google Scholar 

  29. Ohwada, T.: Structure of normal shock waves: direct numerical analysis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids 5, 217–234 (1993)

    Article  MathSciNet  Google Scholar 

  30. Pareschi, L., Perthame, B.: A Fourier spectral method for homogeneous Boltzmann equations. Transport Theory Statist. Phys. 25, 369–382 (1996)

    Article  MathSciNet  Google Scholar 

  31. Pareschi, L., Russo, G.: Numerical solution of the Boltzmann equation I: spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37, 1217–1245 (2000)

    Article  MathSciNet  Google Scholar 

  32. Peng, Z., McClarren, R.G., Frank, M.: A low-rank method for two-dimensional time-dependent radiation transport calculations. J. Comput. Phys. 421, 109735 (2020)

    Article  MathSciNet  Google Scholar 

  33. Rodgers, A., Dektor, A., Venturi, D.: Adaptive integration of nonlinear evolution equations on tensor manifolds. J. Sci. Comput. 92(2), 1–31 (2020). arXiv:2008.00155

    MathSciNet  Google Scholar 

  34. Villani, C.: A review of mathematical topics in collisional kinetic theory. In S. Friedlander and D. Serre, editors, Handbook of Mathematical Fluid Mechanics, vol. I, pp. 71–305. North-Holland (2002)

Download references


This work is partially supported under the NSF CAREER grant DMS-2153208, NSF CDS & E grant CBET-1854829, and AFOSR grant FA9550-21-1-0358.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jingwei Hu.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Wang, Y. An Adaptive Dynamical Low Rank Method for the Nonlinear Boltzmann Equation. J Sci Comput 92, 75 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: