Skip to main content
Log in

A High-Order Velocity-Based Discontinuous Galerkin Scheme for the Shallow Water Equations: Local Conservation, Entropy Stability, Well-Balanced Property, and Positivity Preservation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The nonlinear shallow water equations (SWEs) are widely used to model the unsteady water flows in rivers and coastal areas. In this work, we present a novel class of locally conservative, entropy stable and well-balanced discontinuous Galerkin (DG) methods for the nonlinear shallow water equation with a non-flat bottom topography. The major novelty of our work is the use of velocity field as an independent solution unknown in the DG scheme, which is closely related to the entropy variable approach to entropy stable schemes for system of conservation laws proposed by Tadmor (in: Tezduyar, Hughes T (eds) Proceedings of the winter annual meeting of the American Society of Mechanical Engineering 1986) back in 1986, where recall that velocity is part of the entropy variable for the shallow water equations. Due to the use of velocity as an independent solution unknown, no specific numerical quadrature rules are needed to achieve entropy stability of our scheme on general unstructured meshes in two dimensions. The proposed DG semi-discretization is then carefully combined with the classical explicit strong stability preserving Runge–Kutta (SSP–RK) time integrators (Gottlieb et al. in SIAM Rev. 43, 89–112, 2001) to yield a locally conservative, well-balanced, and positivity preserving fully discrete scheme. Here the positivity preservation property is enforced with the help of a simple scaling limiter. In the fully discrete scheme, we re-introduce discharge as an auxiliary unknown variable. In doing so, standard slope limiting procedures can be applied on the conservative variables (water height and discharge) without violating the local conservation property. Here we apply a characteristic-wise TVB limiter (Cockburn and Shu in J Comput Phys 141:199–224, 1998) on the conservative variables using the Fu-Shu troubled cell indicator (Fu and Shu in J Comput Phys 347:305–327, 2017) in each inner stage of the Runge–Kutta time stepping to suppress numerical oscillations. This fully discrete can be readily applied to various SWEs simulations without dry areas where the water height is close to zero. The case with dry areas need further special attention, where the velocity approximation can be unphysically large near cells with a small water height, which may eventually crashes the simulation if no special treatment is used near these cells. Here we propose a simple wetting/drying treatment for the velocity update without violating the local conservation property to enhance the robustness of the overall scheme. One- and two-dimensional numerical experiments are presented to demonstrate the performance of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Atkins, H.: Continued development of the discontinuous Galerkin method for computational aeroacoustic applications. In: 3rd AIAA/CEAS Aeroacoustics Conference (1997)

  2. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonev, B., Hesthaven, J.S., Giraldo, F.X., Kopera, M.A.: Discontinuous Galerkin scheme for the spherical shallow water equations with applications to tsunami modeling and prediction. J. Comput. Phys. 362, 425–448 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boscheri, W., Dumbser, M., Righetti, M.: A semi-implicit scheme for 3D free surface flows with high-order velocity reconstruction on unstructured Voronoi meshes. Int. J. Numer. Meth. Fluids 72, 607–631 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brus, S.R., Wirasaet, D., Kubatko, E.J., Westerink, J.J., Dawson, C.: High-order discontinuous Galerkin methods for coastal hydrodynamics applications. Comput. Methods Appl. Mech. Engrg. 355, 860–899 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech. Engrg. 198, 1548–1562 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Busto, S., Dumbser, M., Escalante, C., Favrie, N., Gavrilyuk, S.: On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems. J. Sci. Comput. 87, 48 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Busto, S., Dumbser, M., Gavrilyuk, S., Ivanova, K.: On thermodynamically compatible finite volume methods and path-conservative ADER discontinuous Galerkin schemes for turbulent shallow water flows. J. Sci. Comput. 88, 28 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buttinger-Kreuzhuber, A., Horváth, Z., Noelle, S., Blüschl, G., Waser, J.: A fast second-order shallow water scheme on two-dimensional structured grids over abrupt topography. Advances in Water Resources 127, 89–108 (2019)

    Article  Google Scholar 

  10. Chan, J.: On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362, 346–374 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, G., Noelle, S.: A new hydrostatic reconstruction scheme based on subcell reconstructions. SIAM J. Numer. Anal. 55, 758–784 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, T., Shu, C.-W.: Review of entropy stable discontinuous Galerkin methods for systems of conservation laws on unstructured simplex meshes. CSIAM Transactions on Applied Mathematics 1, 1–52 (2020)

    Google Scholar 

  13. Cockburn, B.: Discontinuous galerkin methods for computational fluid dynamics. In: Encyclopedia of Computational Mechanics Second Edition, pp. 1–63 (2018)

  14. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comp. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics, vol. 325 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, fourth ed. (2016)

  18. Dawson, C., Kubatko, E.J., Westerink, J.J., Trahan, C., Mirabito, C., Michoski, C., Panda, N.: Discontinuous Galerkin methods for modeling hurricane storm surge. Advances in Water Resources 34, 1165–1176 (2010)

    Article  Google Scholar 

  19. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fjordholm, U.S., Mishra, S., Tadmor, E.: Energy preserving and energy stable schemes for the shallow water equations. In: Foundations of computational mathematics, Hong Kong 2008, vol. 363 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, pp. 93–139 (2009)

  21. Fjordholm, U.S., Mishra, S., Tadmor, E.: Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230, 5587–5609 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fu, G., Shu, C.-W.: A new troubled-cell indicator for discontinuous Galerkin methods for hyperbolic conservation laws. J. Comput. Phys. 347, 305–327 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gallardo, J.M., Parés, C., Castro, M.: On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227, 574–601 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Giraldo, F.X., Hesthaven, J.S., Warburton, T.: Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations. J. Comput. Phys. 181, 499–525 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics. I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Engrg. 54, 223–234 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5, 133–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lax, P., Wendroff, B.: Systems of conservation laws. Comm. Pure Appl. Math. 13, 217–237 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  30. LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. LeVeque, R.J.: Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002)

  32. Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27, 995–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rhebergen, S., Bokhove, O., van der Vegt, J.J.W.: Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227, 1887–1922 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schöberl, J.: C++11 Implementation of Finite Elements in NGSolve. ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014)

  35. Schwanenberg, D., Köngeter, J.: A discontinuous Galerkin method for the shallow water equations with source terms. In: Discontinuous Galerkin methods (Newport, RI, 1999), vol. 11 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, pp. 419–424 (2000)

  36. Seaïd, M.: Non-oscillatory relaxation methods for the shallow-water equations in one and two space dimensions. Int. J. Numer. Meth. Fluids 46, 457–484 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tadmor, E.: Entropy conservative finite element schemes. In: Numerical Methods for Compressible Flows - Finite Difference Element and Volume Techniques, T. Tezduyar and T. Hughes, eds., vol. AMD-Vol. 78 of Proceedings of the winter annual meeting of the American Society of Mechanical Engineering, pp. 149–158 (1986)

  39. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comp. 49, 91–103 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tadmor, E.: Entropy stable schemes, in Handbook of numerical methods for hyperbolic problems, vol. 17 of Handb. Numer. Anal., Elsevier/North-Holland, Amsterdam, pp. 467–493 (2016)

  41. Tadmor, E., Zhong, W.: Energy-preserving and stable approximations for the two-dimensional shallow water equations. In: Mathematics and computation, a contemporary view, vol. 3 of Abel Symp., Springer, Berlin, pp. 67–94 (2008)

  42. Tavelli, M., Dumbser, M.: A high order semi-implicit discontinuous Galerkin method for the two dimensional shallow water equations on staggered unstructured meshes. Appl. Math. Comput. 234, 623–644 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Toro, E.: Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley (2001)

  44. Wen, X., Don, W.S., Gao, Z., Xing, Y.: Entropy stable and well-balanced discontinuous Galerkin methods for the nonlinear shallow water equations. J. Sci. Comput. 83, 66, 32 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wintermeyer, N., Winters, A.R., Gassner, G.J., Kopriva, D.A.: An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. J. Comput. Phys. 340, 200–242 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wintermeyer, N., Winters, A.R., Gassner, G.J., Warburton, T.: An entropy stable discontinuous Galerkin method for the shallow water equations on curvilinear meshes with wet/dry fronts accelerated by GPUs. J. Comput. Phys. 375, 447–480 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wu, X., Kubatko, E.J., Chan, J.: High-order entropy stable discontinuous Galerkin methods for the shallow water equations: curved triangular meshes and GPU acceleration. Comput. Math. Appl. 82, 179–199 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xing, Y.: Numerical methods for the nonlinear shallow water equations. In: Handbook of numerical methods for hyperbolic problems, vol. 18 of Handb. Numer. Anal., Elsevier/North-Holland, Amsterdam, pp. 361–384 (2017)

  49. Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214, 567–598 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xing, Y., Shu, C.-W.: A survey of high order schemes for the shallow water equations. J. Math. Study 47, 221–249 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes. J. Sci. Comput. 57, 19–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous galerkin methods for the shallow water equations. Advances in Water Resources 33, 1476–1493 (2010)

    Article  Google Scholar 

  53. Xu, Z., Zhang, X.: Bound-preserving high-order schemes. In: Handbook of numerical methods for hyperbolic problems, vol. 18 of Handb. Numer. Anal., Elsevier/North-Holland, Amsterdam, pp. 81–102 (2017)

  54. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467, 2752–2776 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Yulong Xing from Ohio State University for fruitful discussions on the topic.

Funding

We acknowledge the partial support of this work from U.S. National Science Foundation through grant DMS-2012031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Fu.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, G. A High-Order Velocity-Based Discontinuous Galerkin Scheme for the Shallow Water Equations: Local Conservation, Entropy Stability, Well-Balanced Property, and Positivity Preservation. J Sci Comput 92, 86 (2022). https://doi.org/10.1007/s10915-022-01902-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01902-y

Keywords

Mathematics Subject Classification

Navigation