Skip to main content
Log in

Primal Hybrid Method For Quasilinear Parabolic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, a second order quasi-linear parabolic initial-boundary value problem is approximated by using primal hybrid finite element method and Lagrange multipliers. Semidiscrete and backward Euler based fully discrete schemes are discussed and optimal order error estimates are established by applying modified elliptic projection. Optimal order error estimates in maximum norm are also derived. Earlier results on maximum-norm superconvergence of the gradient in piecewise linear finite-element approximations of elliptic and parabolic problems are now carried over to quasilinear case using primal hybrid method. Finally, the results on numerical experiments confirm our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The codes during the current study are available from the corresponding author on reasonable request.

References

  1. Acharya, S.K., Patel, A.: Primal hybrid method for parabolic problems. Appl. Numer. Math. 108, 102–115 (2016)

    Article  MathSciNet  Google Scholar 

  2. Akrivis, G., Li, B., Lubich, C.: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. Math. Comp. 86, 1527–1552 (2017)

    Article  MathSciNet  Google Scholar 

  3. Belgacem, F.: The mortar finite element method with Lagrange Multiplier. Num. Math. 84, 173–197 (1999)

    Article  MathSciNet  Google Scholar 

  4. Brenner, S.C.: Forty years of the Crouzeix-Raviart element. Numer. Meth. PDEs 31(2), 367–396 (2014)

    Article  MathSciNet  Google Scholar 

  5. Brenner, S.C., Scott, L.R.:The mathematical theory of finite element method. Springer Int. (2007)

  6. Brezzi, F., Fortin, M.: Mixed on Hybrid Finite Element Methods. Springer-Verlag, New York (1991)

  7. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam (1978)

  8. Crouzeix, M., Raviart, P.A.: Conforming and non-conforming finite element methods for solving stationary Stokes equation. Rev. Francaise Automat. Inf. Recherche Oper. Ser. Anal. Numer. 7, 33–75 (1973)

    MATH  Google Scholar 

  9. Douglas, J., Jr., Gupta, C.P., Li, G.Y.: Global estimates for a primal hybrid finite element method for second order elliptic problems in the plane. Mat. Apl. Comput. 2, 273–283 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Douglas, J., Jr., Gupta, C.P., Li, G.Y.: Interior and super-convergence estimates for a primal hybrid finite element method for second order elliptic problems. Calcolo 22, 187–207 (1985)

    Article  MathSciNet  Google Scholar 

  11. Dryja, M., Tu, X.: A domain decomposition discretization of parabolic problems. Numer. Math. 107(4), 625–640 (2007)

    Article  MathSciNet  Google Scholar 

  12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1983)

    MATH  Google Scholar 

  13. Gsell, M. A. F., Steinbach, O.: A mortar domain decomposition method for quasilinear problems. Domain Decomposition Methods in Science and Engineering XXIII, Springer, Cham, 333-343 (2017)

  14. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for non-linear parabolic equations. Int. J. Numer. Anal. Modell. 10(3), 622–633 (2012)

    MATH  Google Scholar 

  15. Li,B., Sun,W.:Unconditionally optimal error analysis of fully discrete Galerkin methods for general nonlinear parabolic equations (2013). arXiv:1303.6410

  16. Li, D., Wang, J.: Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Sci. Comput. 72(2), 892–915 (2017)

    Article  MathSciNet  Google Scholar 

  17. Milner, F.A.: A primal hybrid finite element method for quasi-linear second order elliptic problems. Num. Math. 47, 107–122 (1985)

    Article  Google Scholar 

  18. Nie, Y.Y., Thomée, V.: A lumped mass finite element method with quadrature for a non-linear parabolic problem. IMA J. Numer. Anal. 5, 371–396 (1985)

    Article  MathSciNet  Google Scholar 

  19. Park, E.J.: A primal hybrid finite element method for a strongly nonlinear second-order elliptic problem. Num. Meth. PDEs. 11, 61–75 (1995)

    Article  MathSciNet  Google Scholar 

  20. Patel, A., Pani, A.K., Nataraj, N.: Mortar element methods for parabolic problems. Numer. Meth. PDEs. 24, 1460–1484 (2008)

    Article  MathSciNet  Google Scholar 

  21. Pian, T.H.H., Tong, P.: Basis of finite element methods for solid continua. Int. J. Numer. Methods Eng., 3-28 (1969)

  22. Quarteroni, A.: Primal hybrid finite element methods for 4th-order elliptic equation. Calcolo 16, 21–59 (1979)

    Article  MathSciNet  Google Scholar 

  23. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Conf. on Mathematical Lecture Notes in Mathematical Aspects of Finite Element Methods, Vol. 606, Springer, 292-315 (1977)

  24. Raviart, P.A., Thomas, J.M.: Primal hybrid finite element method for second order elliptic equations. Math. Comp. 31, 391–413 (1977)

    Article  MathSciNet  Google Scholar 

  25. Robert, J.E., Thomas, J.M.: Mixed and hybrid methods. Handbook of Num. Anal., P.G. Ciarlet and J.L. Lions, North-Holland, Amesterdam, 523-639 (1991)

  26. Shi, D., Wang, H., Li, Z.: A lumped mass nonconforming finite element method for nonlinear parabolic integro-differential equations on anisotropic meshes. Appl. Math. J. Chinese Univ. 24(1), 97–104 (2009)

    Article  MathSciNet  Google Scholar 

  27. Shi, D., Zhang, B.: Nonconforming finite element method for nonlinear parabolic equations. J. Syst. Sci. Complex. 23, 395–402 (2010)

    Article  MathSciNet  Google Scholar 

  28. Tang, H.S., Haynes, R.D., Houzeaux, G.: A review of domain decomposition methods for simulation of fluid flows: concepts, algorithms, and applications. Arch. Comp. Math. in Eng. 28, 841–873 (2021)

    Article  MathSciNet  Google Scholar 

  29. Thomée, V.: Galerkin finite element methods for parabolic problems. Lecture Notes in Mathematics, Springer, Berlin (1984)

  30. Thomée, V., Xu, J.C., Zhang, N.Y.: Superconvergence of the gradient in piecewise linear finite element approximation to a parabolic problem. SIAM J. Numer. Anal. 26, 553–573 (1989)

    Article  MathSciNet  Google Scholar 

  31. Wheeler, M.F., Whiteman, J.R.: Superconvergence of recovered gradients of discrete time/piecewise linear Galerkin approximations for linear and nonlinear parabolic problems. Numer. Meth. PDEs. 10, 271–294 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for his/her valuable comments which help to improve the revised manuscript. The first and second authors acknowledge the financial support provided by the DST-FIST program (Govt. of India) for setting up the computing lab facility called Center for Mathematical & Financial Computing (C-MFC) at the LNM Institute of Information Technology under the scheme“Fund for Improvement of Science and Technology”(FIST - No. SR/FST/MS-I/2018/24).

Funding

The authors declare that no funds and grants were received during the preparation of this manuscript. However, the first and second authors acknowledge the computing lab facility provided by the“Center for Mathematical & Financial Computing (C-MFC)”at the LNM Institute of Information Technology supported financially by the DST-FIST program (Govt. of India) under the scheme“Fund for Improvement of Science and Technology” (FIST - No. SR/FST/MS-I/2018/24).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to prepare this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amiya K. Pani.

Ethics declarations

Conflict of interest

The authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokeen, R., Patel, A. & Pani, A.K. Primal Hybrid Method For Quasilinear Parabolic Problems. J Sci Comput 92, 10 (2022). https://doi.org/10.1007/s10915-022-01858-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01858-z

Keywords

Mathematics Subject Classification

Navigation