Skip to main content
Log in

Exact and Inexact Iterative Methods for Finding the Largest Eigenpair of a Weakly Irreducible Nonnegative Tensor

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In tensor computations, tensor–vector multiplication is one of the main computational costs. We recently studied algorithms with wider applicability and more computational potential for computing the largest eigenpair of a weakly irreducible nonnegative mth-order tensor \({\mathscr {A}}\), called higher-order Noda iteration (HONI). This method is an eigenvalue solver which uses an inner-outer scheme. The outer iteration is the update of the approximate eigenpair(s), while in the inner iteration a multilinear system has to be solved, often iteratively. For the inner iteration, we also provide a Newton-type method to solve multilinear systems, and prove that the algorithm converges to the unique solution of multilinear systems and the convergence rate is quadratic. HONI has superior performance in terms of fast convergence and positivity preserving property, and its main advantage is to use simple recursive relations to compute the approximate eigenvalue, which means that no additional tensor–vector multiplication is required. Moreover, we devise a practical relaxation criterion based on our theoretical results to improve the efficiency and practicality of HONI, called inexact HONI, and further explain the relationship between HONI and Newton–Noda iteration. Numerical experiments are provided to support the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  2. Chang, K.-C., Pearson, K.J., Zhang, T.: Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J. Matrix Anal. Appl. 32, 806–819 (2011)

    Article  MathSciNet  Google Scholar 

  3. Chang, K.C., Pearson, K., Zhang, T.: Perron–Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008)

    Article  MathSciNet  Google Scholar 

  4. Ching, W., Ng, M.: Markov Chains: Models, Algorithms and Applications. International Series in Operations Research and Management Science. Springer, New York (2006)

    Google Scholar 

  5. Cooper, J., Dutle, A.: Spectra of uniform hypergraphs. Linear Algebra Appl. 436, 3268–3292 (2012)

    Article  MathSciNet  Google Scholar 

  6. Ding, W., Wei, Y.: Solving multi-linear systems with M-tensors. J. Sci. Comput. 68, 689–715 (2016)

    Article  MathSciNet  Google Scholar 

  7. Friedland, S., Gaubert, S., Han, L.: Perron–Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl. 438, 738–749 (2013)

    Article  MathSciNet  Google Scholar 

  8. Han, L.: A homotopy method for solving multilinear systems with M-tensors. Appl. Math. Lett. 69, 49–54 (2017)

    Article  MathSciNet  Google Scholar 

  9. He, H., Ling, C., Qi, L., Zhou, G.: A globally and quadratically convergent algorithm for solving multilinear systems with M-tensors. J. Sci. Comput. 76, 1718–1741 (2018)

    Article  MathSciNet  Google Scholar 

  10. Hu, S., Huang, Z.-H., Qi, L.: Finding the spectral radius of a nonnegative tensor (2011). http://arxiv.org/pdf/1111.2138v1

  11. Hu, S., Qi, L.: The Laplacian of a uniform hypergraph. J. Comb. Optim. 29, 331–366 (2015)

    Article  MathSciNet  Google Scholar 

  12. Hu, S., Qi, L., Xie, J.: The largest Laplacian and signless Laplacian \(H\)-eigenvalues of a uniform hypergraph. Linear Algebra Appl. 469, 1–27 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  14. Liu, C.-S., Guo, C.-H., Lin, W.-W.: A positivity preserving inverse iteration for finding the Perron pair of an irreducible nonnegative third order tensor. SIAM J. Matrix Anal. Appl. 37, 911–932 (2016)

    Article  MathSciNet  Google Scholar 

  15. Liu, C.-S., Guo, C.-H., Lin, W.-W.: Newton–Noda iteration for finding the Perron pair of a weakly irreducible nonnegative tensor. Numer. Math. 137, 63–90 (2017)

    Article  MathSciNet  Google Scholar 

  16. Li, D., Xie, S., Xu, H.: Splitting methods for tensor equations. Numer. Linear Algebra 24, 1–6 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Lv, C., Ma, C.: A Levenberg–Marquardt method for solving semi-symmetric tensor equations. J. Comput. Appl. Math. 332, 13–25 (2018)

    Article  MathSciNet  Google Scholar 

  18. Ni, Q., Qi, L.: A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map. J. Glob. Optim. 61, 627–641 (2015)

    Article  MathSciNet  Google Scholar 

  19. Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31, 1090–1099 (2009)

    Article  MathSciNet  Google Scholar 

  20. Noda, T.: Note on the computation of the maximal eigenvalue of a non-negative irreducible matrix. Numer. Math. 17, 382–386 (1971)

    Article  MathSciNet  Google Scholar 

  21. Pearson, K.J.: Essentially positive tensors. Int. J. Algebra 4, 421–427 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Raftery, A.E.: A model of high-order Markov chains. J. R. Stat. Soc. Ser. B 47, 528–539 (1985)

    MathSciNet  MATH  Google Scholar 

  23. Wang, X., Che, M., Wei, Y.: Neural networks based approach solving multi-linear systems with M-tensors. Neurocomputing 351, 33–42 (2019)

    Article  Google Scholar 

  24. Xie, Z., Jin, X., Wei, Y.: Tensor methods for solving symmetric M-tensor. J. Sci. Comput. 74, 412–425 (2018)

    Article  MathSciNet  Google Scholar 

  25. Yang, Y., Yang, Q.: On some properties of nonnegative weakly irreducible tensors (2011). arXiv:1111.0713v2

  26. Yang, Y., Yang, Q.: Further results for Perron–Frobenius Theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31, 2517–2530 (2010)

    Article  MathSciNet  Google Scholar 

  27. Zhang, L., Qi, L.: Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor. Numer. Linear Algebra Appl. 19, 830–841 (2012)

    Article  MathSciNet  Google Scholar 

  28. Zhang, L., Qi, L., Zhou, G.: M-tensors and some applications. SIAM J. Matrix Anal. Appl. 35, 437–452 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous referees for their valuable comments. This work is supported by Ministry of Science and Technology in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Sung Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CS. Exact and Inexact Iterative Methods for Finding the Largest Eigenpair of a Weakly Irreducible Nonnegative Tensor. J Sci Comput 91, 78 (2022). https://doi.org/10.1007/s10915-022-01852-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01852-5

Keywords

Mathematics Subject Classification

Navigation