Skip to main content
Log in

High-Order FDTD Schemes for Maxwell’s Interface Problems with Discontinuous Coefficients and Complex Interfaces Based on the Correction Function Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose high-order FDTD schemes based on the Correction Function Method (CFM) (Marques et al. in J Comput Phys 230:7567–7597, 2011) for Maxwell’s interface problems with discontinuous coefficients and complex interfaces. The key idea of the CFM is to model the correction function near an interface to retain the order of a finite difference approximation. To do so, we solve a system of PDEs based on the original problem by minimizing an energy functional. The CFM is applied to the standard Yee scheme and a fourth-order FDTD scheme. The proposed CFM-FDTD schemes are verified in 2-D using the transverse magnetic (\(\hbox {TM}_z\)) mode. Numerical examples include scattering of magnetic and non-magnetic dielectrics, and problems with manufactured solutions using various complex interfaces and discontinuous piecewise varying coefficients. Long-time simulations are also performed to investigate the stability of CFM-FDTD schemes. The proposed CFM-FDTD schemes achieve up to fourth-order convergence in \(L^2\)-norm and provide approximations devoid of spurious oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abraham, D.S., Giannacopoulos, D.D.: A parallel implementation of the correction function method for Poisson’s equation with immersed surface charges. IEEE Trans. Magn. 53(6) (2017)

  2. Abraham, D.S., Marques, A.N., Nave, J.C.: A correction function method for the wave equation with interface jump conditions. J. Comput. Phys. 353, 281–299 (2018)

    Article  MathSciNet  Google Scholar 

  3. Banks, J.W., Buckner, B.B., Henshaw, W.D., Jenkinson, M.J., Kildishev, A.V., Kovačič, G., Prokopeva, L.J., Schwendeman, D.W.: A high-order accurate scheme for Maxwell’s equations with a Generalized Dispersive Material (GDM) model and material interfaces. J. Comput. Phys. 412, 109424 (2020)

    Article  MathSciNet  Google Scholar 

  4. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cai, W., Deng, S.: An upwinding embedded boundary method for Maxwell’s equations in media with material interfaces: 2D case. J. Comput. Phys. 190, 159–183 (2003)

    Article  MathSciNet  Google Scholar 

  6. Chen, J., Jarrett, R.: Robust benchmarking in noisy environments. In: HPEC’16 Proceedings of the Twentieth IEEE High Performance Extreme Computing Conference. IEEE (2016)

  7. Cockburn, B., Li, F., Shu, C.W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194(2), 588–610 (2004)

    Article  MathSciNet  Google Scholar 

  8. Ditkowski, A., Dridi, K., Hesthaven, J.S.: Convergent cartesian grid methods for Maxwell equations in complex geometries. J. Comput. Phys. 170, 39–80 (2001)

    Article  MathSciNet  Google Scholar 

  9. Dridi, K., Hesthaven, J.S., Ditkowski, A.: Staircase-free finite-difference time-domain formulation for general materials in complex geometries. IEEE Trans. Antennas Propag. 49(5), 749–756 (2001)

    Article  MathSciNet  Google Scholar 

  10. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MathSciNet  Google Scholar 

  11. Ghrist, M., Fornberg, B., Driscoll, T.A.: Staggered time integrators for wave equations. SIAM J. Numer. Anal. 38, 718–741 (2000)

    Article  MathSciNet  Google Scholar 

  12. Hesthaven, J.S.: High-order accurate methods in time-domain computational electromagnetics: a review. Adv. Imag. Electron Phys. 127, 59–123 (2003)

    Article  Google Scholar 

  13. Kallemov, B., Bhalla, A.P.S., Griffith, B.E., Donev, A.: An immersed boundary method for rigid bodies. Commun. Appl. Math. Comput. Sci. 11, 79–141 (2016)

    Article  MathSciNet  Google Scholar 

  14. Law, Y.M., Marques, A.N., Nave, J.C.: Treatment of complex interfaces for Maxwell’s equations with continuous coefficients using the correction function method. J. Sci. Comput. 82(3), 56 (2020)

    Article  MathSciNet  Google Scholar 

  15. Law, Y.M., Nave, J.C.: FDTD schemes for Maxwell’s equations with embedded perfect electric conductors based on the correction function method. J. Sci. Comput. 88(3), 72 (2021)

    Article  MathSciNet  Google Scholar 

  16. LeVeque, R.J., Li, Z.: The immersed interface method for Elliptic equations with discontinuous coefficients and singular sources. SIAM J. Num. Anal. 31(4), 1019–1044 (1994)

    Article  MathSciNet  Google Scholar 

  17. Marques, A.N.: A correction function method to solve incompressible fluid flows to high accuracy with immersed geometries. Ph.D. thesis, Massachusetts Institute of Technology (2012)

  18. Marques, A.N., Nave, J.C., Rosales, R.R.: A correction function method for Poisson problems with interface jump conditions. J. Comput. Phys. 230, 7567–7597 (2011)

    Article  MathSciNet  Google Scholar 

  19. Marques, A.N., Nave, J.C., Rosales, R.R.: High order solution of Poisson problems with piecewise constant coefficients and interface jumps. J. Comput. Phys. 335, 497–515 (2017)

    Article  MathSciNet  Google Scholar 

  20. Marques, A.N., Nave, J.C., Rosales, R.R.: Imposing jump conditions on nonconforming interfaces for the correction function method: a least squares approach. J. Comput. Phys. 397, 108869 (2019)

    Article  MathSciNet  Google Scholar 

  21. Nguyen, D.D., Zhao, S.: A new high order dispersive FDTD method for Drude material with complex interfaces. J. Comput. Appl. Math. 289, 1–14 (2015)

    Article  MathSciNet  Google Scholar 

  22. Nguyen, D.D., Zhao, S.: A second order dispersive FDTD algorithm for transverse electric Maxwell’s equations with complex interfaces. Comput. Math. Appl. 71, 1010–1035 (2016)

    Article  MathSciNet  Google Scholar 

  23. Stein, D.B., Guy, R.D., Thomases, B.: Immersed boundary smooth extension: a high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods. J. Comput. Phys. 304, 252–274 (2016)

    Article  MathSciNet  Google Scholar 

  24. Taflove, A.: Computational Electrodynamics : The Finite Difference Time-domain Method. Artech House, Norwood (1995)

    MATH  Google Scholar 

  25. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  Google Scholar 

  26. Yu, S., Zhou, Y., Wei, G.W.: Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. J. Comput. Phys. 224, 729–756 (2007)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Y., Nguyen, D.D., Du, K., Xu, J., Zhao, S.: Time-domain numerical solutions of Maxwell interface problems with discontinuous electromagnetic waves. Adv. Appl. Math. Mech. 8, 353–385 (2016)

    Article  MathSciNet  Google Scholar 

  28. Zhao, S., Wei, G.W.: High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces. J. Comput. Phys. 200, 60–103 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Alexis Montoison of Polytechnique Montréal for his help on the Julia programming language. The authors also thank Dr. Jessica Lin and Dr. Gantumur Tsogtgerel of McGill University for their support.

Funding

The research of JCN was partially supported by the NSERC Discovery Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann-Meing Law.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Availability of data and material

All data generated or analyzed during this study are included in this article.

Code availability

The custom code used for this work is not yet publicly available.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Law, YM., Nave, JC. High-Order FDTD Schemes for Maxwell’s Interface Problems with Discontinuous Coefficients and Complex Interfaces Based on the Correction Function Method. J Sci Comput 91, 26 (2022). https://doi.org/10.1007/s10915-022-01797-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01797-9

Keywords

Mathematics Subject Classification

Navigation