Skip to main content
Log in

One-parameter Galerkin Finite Element Methods for Neutral Reaction-diffusion Equations with Piecewise Continuous Arguments

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper deals with Galerkin finite element (GFE) approximation to the initial-boundary value problems (IBVPs) of neutral reaction-diffusion equations with piecewise continuous arguments. For solving this kind of IBVPs, we first present a semi-discrete GFE scheme and give its error estimates in \(L^2\)- and \(H^1\)-norm. Then, we further construct a class of one-parameter fully discrete GFE methods with parameter \(\theta \) (\(0\! \le \! \theta \! \le \! 1\)) and analyze their unique solvability and \(L^2\)- and \(H^1\)-error. The result of error analysis shows that, under the suitable conditions and sense of \(L^2\)-norm (resp. \(H^1\)-norm), the one-parameter fully discrete GFE methods are convergent of order r (resp. \(r\! -\! 1\)) in space and order one (resp. two) in time when \(\theta \! \ne \! \frac{1}{2}\) (resp. \(\theta \! =\! \frac{1}{2}\)), where \(r\!-\!1~(r\! \ge \! 2)\) denotes the degree of the piecewise polynomial in finite element space. In the end, some numerical experiments are performed to verify the computational effectiveness and theoretical accuracy of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data and material generated or analysed during this study are included in this paper.

References

  1. Akhmet, M., Aruğaslan, D., Yılmaz, E.: Stability in cellular neural networks with a piecewise constant argument. Comput. Appl. Math. 233, 2365–2373 (2010)

    Article  MathSciNet  Google Scholar 

  2. Akhmet, M., Öktem, H., Pickl, S., Weber, G.: An anticipatory extension of malthusian model. AIP Conf. Proc. 839, 260–264 (2006)

    Article  Google Scholar 

  3. Ashyralyev, A., Agirseven, D.: On the stable difference schemes for the Schrödinger equation with time delay. Comput. Methods Appl. Math. 20, 27–38 (2020)

    Article  MathSciNet  Google Scholar 

  4. Bereketoglu, H., Lafci, M.: Behavior of the solutions of a partial differential equation with a piecewise constant argument. Filomat 31, 5931–5943 (2017)

    Article  MathSciNet  Google Scholar 

  5. Chen, S., Zhao, J.: Estimations of the constants in inverse inequality for finite element functions. J. Comput. Math. 31, 522–531 (2013)

    Article  MathSciNet  Google Scholar 

  6. Dai, L.: Nonlinear dynamics of piecewise constant systems and implementation of piecewise constant arguments. World Scientific, Singapore (2008)

    Book  Google Scholar 

  7. Dai, L., Fan, L.: Analytical and numerical approaches to characteristics of linear and nonlinear vibratory systems under piecewise discontinuous disturbances. Commun. Nonlinear Sci. Numer. Simul. 9, 417–429 (2004)

    Article  Google Scholar 

  8. Esmailzadeh, M., Najafi, H.S., Aminikhah, H.: A numerical scheme for diffusion-convection equation with piecewise constant arguments. Comput. Meth. Diff. Equ. 8, 573–584 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Esmailzadeh, M., Najafi, H.S., Aminikhah, H.: A numerical method for solving hyperbolic partial differential equations with piecewise constant arguments and variable coefficients. J. Diff. Equ. Appl. 27, 172–194 (2021)

    Article  MathSciNet  Google Scholar 

  10. Hale, J.K., Lunel, S.M.V.: Introduction to functional differential equations. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  11. Kolmanovskii, V., Myshkis, A.: Introduction to the theory and applications of functional differential equations. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  12. Kuang, J., Xiang, J., Tian, H.: The asymptotic stability of one-parameter methods for neutral differential equations. BIT. 34, 400–408 (1994)

    Article  MathSciNet  Google Scholar 

  13. Liang, H., Shi, D., Lv, W.: Convergence and asymptotic stability of Galerkin methods for a partial differential equation with piecewise constant argument. Appl. Math. Comput. 217, 854–860 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Liang, H., Liu, M., Lv, W.: Stability of \(\theta \)-schemes in the numerical solution of a partial differential equation with piecewise continuous arguments. Appl. Math. Lett. 23, 198–206 (2010)

    Article  MathSciNet  Google Scholar 

  15. Liu, M., Spijker, M.N.: The stability of \(\theta \)-methods in the numerical solution of delay differential equations. IMA J. Numer. Anal. 10, 31–48 (1990)

    Article  MathSciNet  Google Scholar 

  16. Liu, Y.: Stability analysis of \(\theta \)-methods for neutral functional-differential equations. Numer. Math. 70, 473–485 (1995)

    Article  MathSciNet  Google Scholar 

  17. Thomée, V.: Galerkin finite element methods for parabolic problems. Springer-Verlag, Berlin (2007)

    MATH  Google Scholar 

  18. Tian, H.: Asymptotic stability analysis of the linear \(\theta \)-method for linear parabolic differential equations with delay. J. Differ. Equ. Appl. 15, 473–487 (2009)

    Article  MathSciNet  Google Scholar 

  19. Veloz, T., Pinto, M.: Existence, computability and stability for solutions of the diffusion equation with general piecewise constant argument. J. Math. Anal. Appl. 426, 330–339 (2015)

    Article  MathSciNet  Google Scholar 

  20. Wang, W., Li, S.: Stability analysis of \(\theta \)-methods for nonlinear neutral functional differential equations. SIAM J. Sci. Comput. 30, 2181–2205 (2008)

    Article  MathSciNet  Google Scholar 

  21. Wang, Q., Wen, J.: Analytical and numerical stability of partial differential equations with piecewise constant arguments. Numer. Meth. Part. Diff. Equ. 30, 1–16 (2014)

    Article  MathSciNet  Google Scholar 

  22. Wang, Q.: Stability analysis of parabolic partial differential equations with piecewise continuous arguments. Numer. Meth. Part. Diff. Equ. 33, 531–545 (2017)

    Article  MathSciNet  Google Scholar 

  23. Wang, Q.: Stability of numerical solution for partial differential equations with piecewise constant arguments. Adv. Diff. Equ. 2018, 1–13 (2018)

    Article  MathSciNet  Google Scholar 

  24. Wiener, J., Debnath, L.: Partial differential equations with piecewise constant delay. Int. J. Math. Math. Sci. 14, 485–496 (1991)

    Article  MathSciNet  Google Scholar 

  25. Wiener, J., Debnath, L.: A parabolic differential equation with unbounded piecewise constant delay. Int. J. Math. Math. Sci. 15, 339–346 (1992)

    Article  MathSciNet  Google Scholar 

  26. Wiener, J., Debnath, L.: Boundary value problems for the diffusion equation with piecewise continuous time delay. Int. J. Math. Math. Sci. 20, 187–195 (1997)

    Article  MathSciNet  Google Scholar 

  27. Wiener, J., Heller, W.: Oscillatory and periodic solutions to a diffusion equation of neutral type. Int. J. Math. Math. Sci. 22, 313–348 (1999)

    Article  MathSciNet  Google Scholar 

  28. Wiener, J., Debnath, L.: A wave equation with discontinuous time delay. Int. J. Math. Math. Sci. 15, 781–788 (1992)

    Article  MathSciNet  Google Scholar 

  29. Wiener, J.: Generalized solutions of functional differential equations. World Scientific, Singapore (1993)

    Book  Google Scholar 

  30. Wiener, J., Debnath, L.: A survey of partial differential equations with piecewise continuous arguments. Int. J. Math. Math. Sci. 18, 209–228 (1995)

    Article  MathSciNet  Google Scholar 

  31. Wu, J., Xia, H.: Rotating waves in neutral partial functional differential equations. J. Dyn. Diff. Equ. 11, 209–238 (1999)

    Article  MathSciNet  Google Scholar 

  32. Wu, J.: Theory and application of functional differential equation. Springer, New York (1996)

    Book  Google Scholar 

  33. Wu, S., Huang, T.: Schwarz waveform relaxation for a neutral functional partial differential equation model of lossless coupled transmission lines. SIAM J. Sci. Comput. 35, 1161–1191 (2013)

    Article  MathSciNet  Google Scholar 

  34. Zhang, C., Sun, G.: The discrete dynamics of nonlinear infinite-delay-differential equations. Appl. Math. Lett. 15, 521–526 (2002)

    Article  MathSciNet  Google Scholar 

  35. Zhang, C., Liu, B., Wang, W., Qin, T., Liu, B.: Multi-domain Legendre spectral collocation method for nonlinear neutral equations with piecewise continuous argument. Inter. J. Comput. Math. 95, 2419–2432 (2018)

    Article  MathSciNet  Google Scholar 

  36. Zhang, C., Li, C., Jiang, J.: Extended block boundary value methods for neutral equations with piecewise constant argument. Appl. Numer. Math. 150, 182–193 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The corresponding author Chengjian Zhang’s work is supported by NSFC (Grant No. 11971010).

Author information

Authors and Affiliations

Authors

Contributions

HH Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Writing-Original draft preparation, Visualization; CZ Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Data Curation, Writing-Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Chengjian Zhang.

Ethics declarations

Conflict of interest

The authors of this paper declare that they have no conflict of interest.

Code availability

Code will be available on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC (Grant No. 11971010)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Zhang, C. One-parameter Galerkin Finite Element Methods for Neutral Reaction-diffusion Equations with Piecewise Continuous Arguments. J Sci Comput 90, 91 (2022). https://doi.org/10.1007/s10915-022-01769-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01769-z

Keywords

Mathematics Subject Classification

Navigation