Skip to main content
Log in

Error Analysis of an Unfitted HDG Method for a Class of Non-linear Elliptic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study Hibridizable Discontinuous Galerkin (HDG) discretizations for a class of non-linear interior elliptic boundary value problems posed in curved domains where both the source term and the diffusion coefficient are non-linear. We consider the cases where the non-linear diffusion coefficient depends on the solution and on the gradient of the solution. To sidestep the need for curved elements, the discrete solution is computed on a polygonal subdomain that is not assumed to interpolate the true boundary, giving rise to an unfitted computational mesh. We show that, under mild assumptions on the source term and the computational domain, the discrete systems are well posed. Furthermore, we provide a priori error estimates showing that the discrete solution will have optimal order of convergence as long as the distance between the curved boundary and the computational boundary remains of the same order of magnitude as the mesh parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen, G., Cockburn, B., Singler, J., Zhang, Y.: Superconvergent interpolatory HDG methods for reaction diffusion equations I: an HDG\(_k\) method. J. Sci. Comput. 81(3), 2188–2212 (2019)

    Article  MathSciNet  Google Scholar 

  2. Cockburn, B., Gopalakrishnan, J., Lazarov, R.D.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  3. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MathSciNet  Google Scholar 

  4. Cockburn, B., Gupta, D., Reitich, F.: Boundary-conforming discontinuous Galerkin methods via extensions from subdomains. J. Sci. Comput. 42(1), 144 (2009)

    Article  MathSciNet  Google Scholar 

  5. Cockburn, B., Qiu, W., Solano, M.: A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity. Math. Comput. 83(286), 665–699 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cockburn, B., Singler, J.R., Zhang, Y.: Interpolatory HDG method for parabolic semilinear PDEs. J. Sci. Comput. 79(3), 1777–1800 (2019)

    Article  MathSciNet  Google Scholar 

  7. Cockburn, B., Solano, M.: Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains. SIAM J. Sci. Comput. 34(1), A497–A519 (2012)

    Article  MathSciNet  Google Scholar 

  8. Dautov, R.Z., Fedotov, E.M.: Abstract theory of hybridizable discontinuous Galerkin methods for second-order quasilinear elliptic problems. Comput. Math. Math. Phys. 54(3), 474–490 (2014)

    Article  MathSciNet  Google Scholar 

  9. Gatica, G.N., Sequeira, F.A.: Analysis of an augmented HDG method for a class of Quasi-Newtonian Stokes flows. J. Sci. Comput. 65(3), 1270–1308 (2015)

    Article  MathSciNet  Google Scholar 

  10. Gatica, G.N., Sequeira, F.A.: A priori and a posteriori error analyses of an augmented HDG method for a class of Quasi-Newtonian Stokes flows. J. Sci. Comput. 69, 1192–1250 (2016)

    Article  MathSciNet  Google Scholar 

  11. Grad, H., Rubin, H.: Hydromagnetic equilibria and force-free fields. In: Proceedings of the Second international conference on the peaceful uses of atomic energy, Geneva, vol. 31,190, New York, United Nations (Oct 1958)

  12. Leng, H.: Adaptive HDG methods for the steady-state incompressible Navier–Stokes equations. J. Sci. Comput. 87(1), 1–26 (2021)

    Article  MathSciNet  Google Scholar 

  13. Lüst, R., Schlüter, A.: Axialsymmetrische magnetohydrodynamische Gleichgewichtskonfigurationen. Z. Naturf 12a, 850–854 (1957)

    Article  MathSciNet  Google Scholar 

  14. Marche, F.: Combined hybridizable discontinuous Galerkin (HDG) and Runge–Kutta discontinuous Galerkin (RK-DG) formulations for Green–Naghdi equations on unstructured meshes. J. Comput. Phys. 418, 109637 (2020)

    Article  MathSciNet  Google Scholar 

  15. Qiu, W., Shi, K.: A mixed DG method and an HDG method for incompressible magnetohydrodynamics. IMA J. Numer. Anal. 40(2), 1356–1389, 01 (2019)

    Article  MathSciNet  Google Scholar 

  16. Sánchez, N., Sánchez-Vizuet, T., Solano, M.E.: A priori and a posteriori error analysis of an unfitted HDG method for semi-linear elliptic problems. Numer. Math. 148(4), 919–958 (2021)

    Article  MathSciNet  Google Scholar 

  17. Sánchez-Vizuet, T., Solano, M.E.: A Hybridizable discontinuous Galerkin solver for the Grad-Shafranov equation. Comput. Phys. Commun. 235, 120–132 (2019)

    Article  MathSciNet  Google Scholar 

  18. Sánchez-Vizuet, T., Solano, M.E., Cerfon, A.J.: Adaptive hybridizable discontinuous Galerkin discretization of the Grad–Shafranov equation by extension from polygonal subdomains. Comput. Phys. Commun. 255, 107239 (2020)

    Article  MathSciNet  Google Scholar 

  19. Shafranov, V.D.: On magnetohydrodynamical equilibrium configurations. Sov. Phys. JETP 6, 545–554 (1958)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors have no relevant financial or non-financial interests to disclose. All authors have contributed equally to the article and the order of authorship has been determined alphabetically. Nestor Sánchez is supported by the Scholarship Program of CONICYT-Chile. Manuel E. Solano was partially funded by CONICYT–Chile through FONDECYT project No. 1200569 and by Project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal. Tonatiuh Sánchez–Vizuet was partially supported by the National Science Foundation throught the grant NSF-DMS-2137305 “LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonatiuh Sánchez-Vizuet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: HDG Projection

The HDG projectors introduced by [3] and their properties have been used extensively throughout the text. Here we provide a quick definition and summary of the properties used in this article.

Consider constants \(l_u, l_{\varvec{q}} \in [0,k]\) and functions \((\varvec{q},u) \in H^{1+l_q}(T) \times H^{1+l_u}(T)\). Moreover, recall the discrete spaces

$$\begin{aligned} \varvec{V}_h&:= \{\varvec{v}\in \varvec{L}^2(\mathcal {T}_h) : \varvec{v}|_T \in [\mathbb {P}_k(T)]^d, \quad \forall \ T \in \mathcal {T}_h \}, \\ W_h&:= \{w\in L^2(\mathcal {T}_h) : w|_T \in \mathbb {P}_k(T), \quad \forall \ T \in \mathcal {T}_h \}, \\ M_h&:= \{\mu \in L^2(\mathcal {E}_h) : \mu |_T \in \mathbb {P}_k(e), \quad \forall \ e \in \mathcal {E}_h \}, \end{aligned}$$

defined in (2.7) in the text. We will denote by \(\varvec{\Pi }(\varvec{q},u):=(\varvec{\Pi }_{\mathrm v}\varvec{q},\Pi _{\mathrm w} u)\) the projection over \(\varvec{V}_h\times W_h\) defined by the unique element-wise solutions of

$$\begin{aligned} (\varvec{\Pi }_{\mathrm v}\varvec{q}, \varvec{v})_T&= (\varvec{q}, \varvec{v})_T&\forall \ \varvec{v} \in [\mathbb {P}_{k-1}(T)]^d, \end{aligned}$$
(A.1a)
$$\begin{aligned} (\Pi _{\mathrm w} u, w)_T&= (u,w)_T&\forall \ w\in \mathbb {P}_{k-1}(T), \end{aligned}$$
(A.1b)
$$\begin{aligned} \left\langle \varvec{\Pi }_{\mathrm v}\varvec{q}\cdot \varvec{n} + \tau \Pi _{\mathrm {w}} u, \mu \right\rangle _{F}&= \left\langle \varvec{q} \cdot \varvec{n} + \tau u, \mu \right\rangle _F&\forall \ \mu \in \mathbb {P}_k(F), \end{aligned}$$
(A.1c)

for every element \(T\in \mathcal {T}_h\), and \(F\subset \partial T\). Will will denote the \(L^2\) projector into \(M_h\) by \(P_M\). It was proven in [3] that when the stabilization function is chosen so that \(\tau _T^{\max } := \max \tau |_{\partial T}>0\), then there is a constant \(C>0\) independent of T and \(\tau \) such that

$$\begin{aligned} \Vert \varvec{\Pi }_{\mathrm v}\varvec{q} - \varvec{q}\Vert _T&\le C h_T^{l_{\varvec{q}}+1} |\varvec{q}|_{\varvec{H}^{l_{\varvec{q}}+1}(T)} + C h_T^{l_u+1} \tau _T^* |u|_{H^{l_u+1}(T)}, \end{aligned}$$
(A.2a)
$$\begin{aligned} \Vert \Pi _{\mathrm w} u - u\Vert _T&\le C h_T^{l_u+1} |u|_{H^{l_u+1}(T)} + C \dfrac{h_T^{l_{\varvec{q}}+1}}{\tau _T^{\max }} |\nabla \cdot \varvec{q}|_{H^{l_{\varvec{q}}}(T)}. \end{aligned}$$
(A.2b)

Here \(\tau _T^* := \max \tau |_{\partial T {\setminus } F^*}\) and \(F^*\) is a face of T at which \(\tau |_{\partial T}\) is maximum. As is customary, the symbol \(|\cdot |_{H^s}\) is to be understood as the Sobolev semi norm of order \(s\in \mathbb R\).

Appendix B: Auxiliary Estimates

Duality argument We will consider that, given \(\Theta \in L^2(\Omega )\), the solution to the auxiliary problem

$$\begin{aligned}&\kappa ^{-1}(\zeta ) \varvec{\phi }+ \nabla \psi&= 0&\text {in } \Omega , \end{aligned}$$
(B.1a)
$$\begin{aligned}&\nabla \cdot \varvec{\phi }&= \Theta&\text {in } \Omega , \end{aligned}$$
(B.1b)
$$\begin{aligned}&\psi&= 0&\text {on } \partial \Omega , \end{aligned}$$
(B.1c)

satisfies the regularity estimate

$$\begin{aligned} \Vert \varvec{\phi } \Vert _{H^1(\Omega )} + \Vert \psi \Vert _{H^2(\Omega )} \le C_{reg} \Vert \Theta \Vert _{\Omega }. \end{aligned}$$
(B.2)

where \( C_{reg} >0\) depends on the domain \(\Omega \). Moreover, if \(\Omega _h\) is a subdomain of \(\Omega \) with boundary \(\Gamma _h:=\partial \Omega _h\), l(x) is the length of the transfer path connecting \(\Gamma :=\partial \Omega \) to \(\Gamma _h\) as defined in Sect. 2.2, \(P_M\) is the \(L^2-\)projector onto the discrete space \(M_h\) defined in (2.7), and \(Id_M\) is the identity operator in \(M_h\) we have

Lemma B1

[5, Lemma 5.5] Suppose Assumption (2.4b) and the elliptic regularity inequality (B.2) hold. Then, there exists a constant \(\tilde{c}>0\), such that:

$$\begin{aligned} \Vert {(h^{\perp })}^{-1/2} (Id_M-P_M) \psi \Vert _{\Gamma _h}&\le \tilde{c} \, h \Vert \Theta \Vert _{\Omega }, \end{aligned}$$
(B.3a)
$$\begin{aligned} \Vert l^{1/2} (Id_M-P_M)\partial _n \psi \Vert _{\Gamma _h}&\le \tilde{c} \, R^{1/2} \, h \Vert \Theta \Vert _{\Omega }, \end{aligned}$$
(B.3b)
$$\begin{aligned} \Vert l^{-3/2} (\psi + l \partial _n \psi ) \Vert _{\Gamma _h}&\le \tilde{c} \, \Vert \Theta \Vert _{\Omega }, \end{aligned}$$
(B.3c)
$$\begin{aligned} \Vert l^{-1} \psi \Vert _{\Gamma _h}&\le \tilde{c} \, \Vert \Theta \Vert _{\Omega }. \end{aligned}$$
(B.3d)

Function Delta For any smooth enough function \(\varvec{v}\) defined in \(T^e\cup T_{ext}^e\) and \(\varvec{x}\in \Gamma _h\) we set

$$\begin{aligned} \delta _{\varvec{v}} (\varvec{x}) := \dfrac{1}{l(\varvec{x})} \int _0^{l(\varvec{x})} [\varvec{v}(\varvec{x} + \varvec{n}s) - \varvec{v}(\varvec{x}) ] \cdot \varvec{n} ds. \end{aligned}$$
(B.4)

which hold for each \(e\in \mathcal {E}_h^{\partial }\) (cf. [5, Lemma 5.2]):

$$\begin{aligned} \Vert l^{1/2} \, \delta _{\varvec{v}} \Vert _e&\le \dfrac{1}{\sqrt{3}} \, r_e^{3/2} \, C_{ext}^e \, C_{inv}^e \, \Vert \varvec{v}\Vert _{T^e}&\forall \ \varvec{v} \in [\mathbb {P}_k(T)]^d, \end{aligned}$$
(B.5a)
$$\begin{aligned} \Vert l^{1/2}\,\delta _{\varvec{v}} \Vert _e&\le \dfrac{1}{\sqrt{3}} \, r_e \, \Vert h^{\perp } \partial _n \varvec{v} \cdot \varvec{n}\Vert _{T_{ext}^e}&\forall \ \varvec{v} \in [H^1(T)]^d. \end{aligned}$$
(B.5b)
$$\begin{aligned} \Vert l^{1/2}\, \delta _{\varvec{v}}\Vert _{\infty }&\le \dfrac{1}{\sqrt{3}} \, r_e \, \sup _{\varvec{x}\in e} \Vert h_e^{\perp }\,\partial _n \varvec{v}\cdot \varvec{n} \Vert _{l(\varvec{x})}&\forall \ \varvec{v} \in [H^1(T)]^d. \end{aligned}$$
(B.5c)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, N., Sánchez-Vizuet, T. & Solano, M. Error Analysis of an Unfitted HDG Method for a Class of Non-linear Elliptic Problems. J Sci Comput 90, 92 (2022). https://doi.org/10.1007/s10915-022-01767-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01767-1

Keywords

Mathematics Subject Classification

Navigation