Skip to main content
Log in

High-Order Linearly Implicit Structure-Preserving Exponential Integrators for the Nonlinear Schrödinger Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A novel class of high-order linearly implicit energy-preserving integrating factor Runge–Kutta methods are proposed for the nonlinear Schrödinger equation. Based on the idea of the scalar auxiliary variable approach, the original equation is first reformulated into an equivalent form which satisfies a quadratic energy. The spatial derivatives of the system are then approximated with the standard Fourier pseudo-spectral method. Subsequently, we apply the extrapolation technique/prediction–correction strategy to the nonlinear terms of the semi-discretized system and a linearized energy-conserving system is obtained. A fully discrete scheme is gained by further using the integrating factor Runge–Kutta method to the resulting system. We show that, under certain circumstances for the coefficients of a Runge–Kutta method, the proposed scheme can produce numerical solutions along which the modified energy is precisely conserved, as is the case with the analytical solution and is extremely efficient in the sense that only linear equations with constant coefficients need to be solved at every time step. Numerical results are addressed to demonstrate the remarkable superiority of the proposed schemes in comparison with other existing structure-preserving schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akrivis, G., Li, B., Li, D.: Energy-decaying extrapolated RK-SAV methods for the Allen–Cahn and Cahn–Hilliard equations. SIAM J. Sci. Comput. 41, A3703–A3727 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun. 184, 2621–2633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antoine, X., Duboscq, R.: Gpelab, a matlab toolbox to solve Gross-Pitaevskii equations II: dynamics of stochastic simulations. Comput. Phys. Commun. 193, 95–117 (2015)

    Article  MATH  Google Scholar 

  5. Antoine, X., Shen, J., Tang, Q.: Scalar Auxiliary Variable/Lagrange multiplier based pseudospectral schemes for the dynamics of nonlinear Schrödinger/Gross-Pitaevskii equations. J. Comput. Phys. 437, 110328 (2021)

    Article  Google Scholar 

  6. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Mod. 6, 1–135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barletti, L., Brugnano, L., Caccia, G.F., Iavernaro, F.: Energy-conserving methods for the nonlinear Schrödinger equation. Appl. Math. Comput. 318, 3–18 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Besse, C., Descombes, S., Dujardin, G., Lacroix-Violet, I.: Energy-preserving methods for nonlinear Schrödinger equations. IMA J. Numer. Anal. 41, 618–653 (2020)

    Article  MATH  Google Scholar 

  10. Bo, Y., Wang, Y., Cai, W.: Arbitrary high-order linearly implicit energy-preserving algorithms for Hamiltonian PDEs. arXiv:2011.08375 (2020)

  11. Brugnano, L., Iavernaro, F.: Line Integral Methods for Conservative Problems. Chapman et Hall/CRC, Boca Raton (2016)

    Book  MATH  Google Scholar 

  12. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy preserving discrete line integral methods). J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Calvo, M., Hernández-Abreu, D., Montijano, J.I., Rández, L.: On the preservation of invariants by explicit Runge–Kutta methods. SIAM J. Sci. Comput. 28, 868–885 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Calvo, M., Iserles, A., Zanna, A.: Numerical solution of isospectral flows. Math. Comput. 66, 1461–1486 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Celledoni, E., Cohen, D., Owren, B.: Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comput. Math. 8, 303–317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field" method. J. Comput. Phys. 231, 6770–6789 (2012)

  17. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148, 397–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, J., Qin, M.: Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation. Electr. Trans. Numer. Anal. 12, 193–204 (2001)

    MATH  Google Scholar 

  19. Cohen, D., Hairer, E.: Linear energy-preserving integrators for Poisson systems. BIT 51, 91–101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cui, J., Xu, Z., Wang, Y., Jiang, C.: Mass- and energy-preserving exponential Runge–Kutta methods for the nonlinear Schrödinger equation. Appl. Math. Lett. 112, 106770 (2021)

    Article  MATH  Google Scholar 

  21. Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Delfour, M., Fortin, M., Payre, G.: Finite differencee solution of a nonlinear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, X., Li, B., Ma, S.: High-order mass- and energy-conserving SAV-Gauss collocation finite element methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 59, 1566–1591 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feng, X., Liu, H., Ma, S.: Mass- and energy-conserved numerical schemes for nonlinear Schrödinger equations. Commun. Comput. Phys. 26, 1365–1396 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Furihata, D.: Finite difference schemes for \(\frac{\partial u}{\partial t}=(\frac{\partial }{\partial x})^{\alpha }\frac{\delta {G}}{\delta u}\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156, 181–205 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gong, Y., Cai, J., Wang, Y.: Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs. J. Comput. Phys. 279, 80–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gong, Y., Wang, Q., Wang, Y., Cai, J.: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order linear energy stable schemes for gradient flow models. J. Comput. Phys. 419, 109610 (2020)

    Article  MathSciNet  Google Scholar 

  29. Hairer, E.: Symmetric projection methods for differential equations on manifolds. BIT 40, 726–734 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hairer, E.: Energy-preserving variant of collocation methods. J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  32. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  33. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jiang, C., Wang, Y., Cai, W.: A linearly implicit energy-preserving exponential integrator for the nonlinear Klein–Gordon equation. J. Comput. Phys. 419, 109690 (2020)

    Article  MathSciNet  Google Scholar 

  35. Jiang, C., Wang, Y., Gong, Y.: Explicit high-order energy-preserving methods for general Hamiltonian partial differential equations. J. Comput. Appl. Math. 38, 113298 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ju, L., Li, X., Qiao, Z., Yang, J.: Maximum bound principle preserving integrating factor Runge-Kutta methods for semilinear parabolic equations. arXiv:2010.12165v1 [math.NA] (2020)

  37. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87, 1859–1885 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kobayashi, M., Tsubota, M.: Kolmogorov spectrum of superfluid turbulence: numerical analysis of the Gross-Pitaevskii equation with a small-scale dissipation. Phys. Rev. Lett. 94, 065302 (2005)

    Article  Google Scholar 

  39. Kong, L., Wei, P., Huang, Y., Zhang, P., Wang, P.: Efficient energy-preserving scheme of the three-coupled nonlinear Schrödinger equation. Math. Methods Appl. Sci. 42, 3222–3235 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lawson, J.D.: Generalized Runge–Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4, 372–380 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, D., Sun, W.: Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations. J. Sci. Comput. 83, A3703–A3727 (2020)

    Article  MathSciNet  Google Scholar 

  42. Li, H., Mu, Z., Wang, Y.: An energy-preserving Crank–Nicolson Galerkin spectral element method for the two dimensional nonlinear Schrödinger equations equation. J. Comput. Appl. Math. 344, 245–258 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, X., Gong, Y., Zhang, L.: Two novel classes of linear high-order structure-preserving schemes for the generalized nonlinear Schrödinger equation. Appl. Math. Lett. 104, 106273 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, Y., Wu, X.: General local energy-preserving integrators for solving multi-symplectic Hamiltonian PDEs. J. Comput. Phys. 301, 141–166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, Y., Wu, X.: Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems. SIAM J. Sci. Comput. 38, A1876–A1895 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171, 425–447 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. Miyatake, Y., Butcher, J.C.: A characterization of energy-preserving methods and the construction of parallel integrators for Hamiltonian systems. SIAM J. Numer. Anal. 54, 1993–2013 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A Math. Theor. 41, 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sanz-Serna, J.M.: Runge–Kutta schemes for Hamiltonian systems. BIT 28, 877–883 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sanz-Serna, J.M., Verwer, J.G.: Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal. 6, 25–42 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  52. Shen, J., Xu, J.: Stabilized predictor-corrector schemes for gradient flows with strong anisotropic free energy. Commun. Comput. Phys. 24, 635–654 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. Shen, X., Leok, M.: Geometric exponential integrators. J. Comput. Phys. 382, 27–42 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sun, Z.: Numerical Methods for Pairtial Differential Equations. Science Press, Beijing (2005) (in chinese)

  57. Tang, W., Sun, Y.: Time finite element methods: a unified framework for numerical discretizations of ODEs. Appl. Math. Comput. 219, 2158–2179 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang, F., Pérez-García, V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)

    MathSciNet  MATH  Google Scholar 

  61. Zhang, H., Qian, X., Yan, J., Song, S.: Highly efficient invariant-conserving explicit Runge–Kutta schemes for the nonlinear Hamiltonian differential equations. J. Comput. Phys. 418, 109598 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere gratitude to the referees for their insightful comments and suggestions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11901513, 11971481, 12071481), the National Key R&D Program of China (Grant No. 2020YFA0709800), the Natural Science Foundation of Hunan (Grant Nos. 2021JJ40655, 2021JJ20053), the Yunnan Fundamental Research Projects (Nos. 202101AT070208, 202001AT070066, 202101AS070044), the High Level Talents Research Foundation Project of Nanjing Vocational College of Information Technology (Grant No. YB20200906), and the Foundation of Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems (Grant No. 202102). Jiang and Cui are in particular grateful to Prof. Yushun Wang and Dr. Yuezheng Gong for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Cui, J., Qian, X. et al. High-Order Linearly Implicit Structure-Preserving Exponential Integrators for the Nonlinear Schrödinger Equation. J Sci Comput 90, 66 (2022). https://doi.org/10.1007/s10915-021-01739-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01739-x

Keywords

Mathematics Subject Classification

Navigation