Skip to main content
Log in

A Two-Grid Decoupled Algorithm for a Multi-Dimensional Darcy–Brinkman Fracture Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study numerical methods for solving a multi-dimensional fracture model, which couples n-dimensional Darcy flow in matrix with \((n-1)\)-dimensional Brinkman flow on fracture. A two-grid decoupled algorithm is proposed, in which the mixed model is decoupled by using the coarse grid approximation to the interface conditions, and then efficient single model solvers are applied for decoupled Darcy and Brinkman problems on the fine mesh. Error estimates show that the two-grid decoupled algorithm retains the same order of approximation accuracy as the coupled one. Numerical experiments in two-dimensional (2D) and three-dimensional (3D) geometries are conducted, and their results confirm our theoretical analysis to illustrate the efficiency and effectiveness of the proposed method for solving multi-domain problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmed, E., Jaffre, J., Roberts, J.E.: A reduced fracture model for two-phase flow with different rock types. Math. Comput. Simul. 137, 49–70 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ahmed, R., Edwards, M., Lamine, S.: Control-volume distributed multipoint flux approximation coupled with a lower-dimensional fracture model. J. Comput. Phys. 284, 462–489 (2015)

    Article  MathSciNet  Google Scholar 

  3. Alboin, C., Jaffre, J., Roberts, J.E., Serres, C.: DDomain decomposition for flow in fractured porous media. Domain Decomposition Methods in Sciences and Engineering, pp. 365–373 (1999)

  4. Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. Math. Model. Numer. Anal. 43(2), 239–275 (2009)

    Article  MathSciNet  Google Scholar 

  5. Antonietti, P., Formaggia, L., Scotti, A., Marco, V., Verzott, N.: Mimetic finite difference approximation of flows in fractured porous media. ESAIM. Math. Model. Numer. Anal. 50(3), 809–832 (2016)

    Article  MathSciNet  Google Scholar 

  6. Boon, C.M., Nordbotten, J.M., Yotov, I.: Robust discretization of flow in fractured porous media. SIAM J. Numer. Anal. 56(4), 2203–2233 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bukac, M., Yotov, I., Zunino, P.: Dimensional model reduction for flow through fractures in poroelastic media. ESAIM. Math. Model. Numer. Anal. 51(4), 1429–1471 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier–Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47(5), 3325–3338 (2009)

    Article  MathSciNet  Google Scholar 

  9. Chen, S., Li, X., Rui, H.: The finite volume method based on the Crouzeix–Raviart element for a fracture model. Numer. Methods Part. Differ. Equ. 35(5), 1904–1927 (2019)

    Article  MathSciNet  Google Scholar 

  10. Chen, S., Rui, H.: A two-grid decoupled algorithm for fracture models. Comput. Math. Appl. 76(5), 1161–1173 (2018)

    Article  MathSciNet  Google Scholar 

  11. Daversin-Catty, C., Richardson, C.N., Ellingsrud, A.J., Rognes, M.E.: Abstractions and automated algorithms for mixed domain finite element methods. Transactions on Mathematical Software arXiv:1911.01166 (2019)

  12. Formaggia, L., Fumagalli, A., Scotti, A., Ruffo, P.: A reduced model for Darcy’s problem in networks of fractures. ESAIM. Math. Model. Numer. Anal. 48(4), 1089–1116 (2014)

  13. Frih, N., Martin, V., Roberts, J.E., Saada, A.: Modeling fractures as interfaces with nonmatching grids. Comput. Geosci. 16(4), 1–18 (2012)

    Article  Google Scholar 

  14. Frih, N., Roberts, J.E., Saada, A.: Modeling fractures as interfaces: a model for Forchheimer fractures. Comput. Geosci. 12(1), 91–104 (2008)

    Article  MathSciNet  Google Scholar 

  15. Fumagalli, A., Keilegavlen, E., Scialo, S.: Conforming, non-conforming and non-matching discretization couplings in discrete fracture network simulations. J. Comput. Phys. 376, 694–712 (2019)

    Article  MathSciNet  Google Scholar 

  16. Giovanardi, B., Formaggia, L., Scotti, A., Zunino, P.: Unfitted fem for modelling the interaction of multiple fractures in a poroelastic medium. Comput. Sci. Eng. 121, 331–352 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Hou, Y.: Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model. Appl. Math. Lett. 57, 90–96 (2016)

    Article  MathSciNet  Google Scholar 

  18. Jaffre, J., Mnejja, M., Roberts, J.E.: A discrete fracture model for two-phase flow with matrix-fracture interaction. Proc. Comput. Sci. 4, 967–973 (2011)

    Article  Google Scholar 

  19. Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., Berre, I.: Porepy: an open-source software for simulation of multiphysics processes in fractured porous media. Comput. Geosci. 25, 243–265 (2021)

    Article  MathSciNet  Google Scholar 

  20. Langtangen, H.P., Logg, A.: Solving pdes in python: the FEniCS tutorial I,(2016)

  21. Lesinigo, M., D’Angelo, C., Quarteroni, A.: A multiscale Darcy–Brinkman model for fluid flow in fractured porous media. Numerische Mathematik 117(4), 717–752 (2011)

    Article  MathSciNet  Google Scholar 

  22. Li, X., Rui, H.: Superconvergence of a fully conservative finite difference method on non-uniform staggered grids for simulating wormhole propagation with the Darcy-Brinkman-Forchheimer framework. J. Fluid Mech. 872, 438–471 (2019)

    Article  MathSciNet  Google Scholar 

  23. Liu, W., Sun, Z.: A block-centered finite difference method for reduced fracture model in karst aquifer system. Comput. Math. Appl. 74(6), 1455–1470 (2017)

    Article  MathSciNet  Google Scholar 

  24. Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32(4), 1170–1184 (1995)

    Article  MathSciNet  Google Scholar 

  25. Martin, V., Jaffre, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)

    Article  MathSciNet  Google Scholar 

  26. Mu, M., Xu, J.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45(5), 1801–1813 (2007)

    Article  MathSciNet  Google Scholar 

  27. Schwenck, N., Flemisch, B., Helmig, R., Wohlmuth, B.: Dimensionally reduced flow models in fractured porous media: crossings and boundaries. Comput. Geosci. 19(6), 1219–1230 (2015)

    Article  MathSciNet  Google Scholar 

  28. Xie, X., Xu, J., Xue, G.: Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models. J. Comput. Math. 3, 181–199 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Xu, J.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29(2), 303–319 (1992)

    Article  MathSciNet  Google Scholar 

  30. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33(5), 1759–1777 (1996)

    Article  MathSciNet  Google Scholar 

  31. Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (2000)

    Article  MathSciNet  Google Scholar 

  32. Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Adv. Comput. Math. 14(4), 293–327 (2001)

    Article  MathSciNet  Google Scholar 

  33. Yan, X., Huang, Z., Yao, J., Song, W., Li, Y., Gong, L.: Theoretical analysis of fracture conductivity created by the channel fracturing technique. J. Nat. Gas Sci. Eng. 31, 320–330 (2016)

    Article  Google Scholar 

  34. Zuo, L., Du, G.: A parallel two-grid linearized method for the coupled Navier–Stokes–Darcy problem. Numer. Algorithms 77(1), 151–165 (2018)

    Article  MathSciNet  Google Scholar 

  35. Zuo, L., Hou, Y.: A decoupling two-grid algorithm for the mixed Stokes–Darcy model with the Beavers–Joseph interface condition. Numer. Methods Part. Differ. Equ. 30(3), 1066–1082 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiumei Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of the first author was supported by Beijing Postdoctoral Foundation (zz2019-78). The work of the second author was supported by the National Nature Science Foundation of China Grant (11971047) and Beijing Natural Science Foundation Project (Z200002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Huang, Q. & Xu, F. A Two-Grid Decoupled Algorithm for a Multi-Dimensional Darcy–Brinkman Fracture Model. J Sci Comput 90, 88 (2022). https://doi.org/10.1007/s10915-021-01738-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01738-y

Keywords

Navigation