Skip to main content
Log in

Parallel-in-Time High-Order Multiderivative IMEX Solvers

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we present a novel class of high-order time integrators for the numerical solution of ordinary differential equations. These integrators are of the two-derivative type, i.e., they take into account not only the first, but also the second temporal derivative of the unknown solution. While being motivated by two-derivative Runge–Kutta schemes, the methods themselves are of the predictor-corrector type, constructed in such a way that time-parallelism through pipelining is possible. This means that predictor and corrector steps can be computed simultaneously on different processors. Two variants are shown, the second-one being of Gauss–Seidel-type and hence having lower storage requirements. It turns out that this second variant is not only low-storage, but also performs better in numerical simulations. The algorithms presented can be cast as implicit two-step-two-derivative-multi-stage methods for which we present a detailed mathematical convergence analysis. Subsequently, numerical results are shown, demonstrating first the algorithms’ ability to cope with very stiff equations and showing up to eighth order of accuracy. Following, the parallel-in-time capabilities are illustrated. We conclude that the class of methods is very well-suited if the time parallelization of very stiff equations is an option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request (jochen.schuetz@uhasselt.be).

Code Availability

The code used to generate the results in this work is available upon reasonable request from the corresponding author (jochen.schuetz@uhasselt.be).

Notes

  1. The dot here (\(\cdot \)) refers to the time derivative d/dt, whereas the prime (\('\)) refers to the Jacobian of the vector valued \(\varPhi _{\text {I}}\) and \(\varPhi _{\text {E}}\).

  2. Let us clarify what we mean by block-rows and block-columns: The matrices we are dealing with here are of size \(s \cdot (k_{\max }+1) \times s \cdot (k_{\max }+1)\). They can hence be subdivided into \((k_{\max }+1)^2\) blocks of size \(s\times s\). According to the notation in Algorithm 1, we begin counting by \(k=0\). Block-row k means hence in the big matrix the rows from \(k(s+1) + 1\) to \((k+1)(s+1)\).

References

  1. Parallel-in-Time. https://parallel-in-time.org

  2. Abdi, A., Conte, D.: Implementation of second derivative general linear methods. Calcolo 57(3), 1–29 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdi, A., Hojjati, G., Sharifi, M.: Implicit-explicit second derivative diagonally implicit multistage integration methods. Comput. Appl. Math. 39(3), 1–15 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aiguobasimwin, I.B., Okuonghae, R.I.: A class of two-derivative two-step Runge–Kutta methods for non-stiff ODEs. J. Appl. Math. 2459809, 2019 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Ascher, U.M., Ruuth, S., Spiteri, R.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ascher, U.M., Ruuth, S., Wetton, B.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baeza, A., Boscarino, S., Mulet, P., Russo, G., Zorío, D.: Reprint of: Approximate Taylor methods for ODEs. Comput. Fluids 169, 87 – 97 (2018). Recent progress in nonlinear numerical methods for time-dependent flow & transport problems

  8. Bispen, G., Arun, K.R., Lukáčová-Medvid’ová, M., Noelle, S.: IMEX large time step finite volume methods for low Froude number shallow water flows. Commun. Comput. Phys. 16, 307–347 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boscarino, S.: On an accurate third order implicit-explicit Runge–Kutta method for stiff problems. Appl. Numer. Math. 59, 1515–1528 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boscarino, S., Pareschi, L.: On the asymptotic properties of IMEX Runge–Kutta schemes for hyperbolic balance laws. J. Comput. Appl. Math. 316, 60–73 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boscarino, S., Qiu, J.M., Russo, G., Xiong, T.: A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system. J. Comput. Phys. 392, 594–618 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Butcher, J.C.: On the convergence of numerical solutions to ordinary differential equations. Math. Comput. 20, 1–10 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Causley, M.F., Seal, D.C.: On the convergence of spectral deferred correction methods. Commun. Appl. Math. Comput. Sci. 14(1), 33–64 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chan, R., Tsai, A.: On explicit two-derivative Runge–Kutta methods. Numer. Algorithms 53, 171–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chouchoulis, J., Schütz, J., Zeifang, J.: Jacobian-free explicit multiderivative Runge–Kutta methods for hyperbolic conservation laws. arXiv preprint arXiv:2107.06633 (2021)

  16. Christlieb, A., Ong, B.: Implicit parallel time integrators. J. Sci. Comput. 49(2), 167–179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Christlieb, A.J., Gottlieb, S., Grant, Z.J., Seal, D.C.: Explicit strong stability preserving multistage two-derivative time-stepping schemes. J. Sci. Comput. 68, 914–942 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Christlieb, A.J., Macdonald, C.B., Ong, B.W.: Parallel high-order integrators. SIAM J. Sci. Comput. 32(2), 818–835 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Christlieb, A.J., Macdonald, C.B., Ong, B.W., Spiteri, R.J.: Revisionist integral deferred correction with adaptive step-size control. Commun. Appl. Math. Comput. Sci. 10(1), 1–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Crockatt, M.M., Christlieb, A.J.: Low-storage integral deferred correction methods for scientific computing. SIAM J. Sci. Comput. 40(5), A2883–A2904 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dittmann, A.J.: High-order multiderivative IMEX schemes. Appl. Numer. Math. 160, 205–216 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7(1), 105–132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229(20), 7625–7648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gander, M.J.: 50 years of time parallel time integration. In: Multiple Shooting and Time Domain Decomposition Methods. Contributions in Mathematical and Computational Sciences, vol. 9, pp. 69–113. Springer, Cham (2015)

  26. Giraldo, F., Restelli, M., Läuter, M.: Semi-implicit formulations of the Navier–Stokes equations: application to nonhydrostatic atmospheric modeling. SIAM J. Sci. Comput. 32(6), 3394–3425 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Haack, J., Jin, S., Liu, J.G.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys. 12, 955–980 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer Series in Computational Mathematics, Springer, Berin (1987)

    Book  MATH  Google Scholar 

  29. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics, Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  30. Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jaust, A., Schütz, J., Seal, D.C.: Implicit multistage two-derivative discontinuous Galerkin schemes for viscous conservation laws. J. Sci. Comput. 69, 866–891 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kastlunger, K., Wanner, G.: On Turan type implicit Runge–Kutta methods. Computing 9, 317–325 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. MathWorks: Parallel Computing Toolbox: Users Guide. https://nl.mathworks.com/help/parallel-computing/

  35. Minion, M.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1(3), 471–500 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Miranker, W.L., Liniger, W.: Parallel methods for the numerical integration of ordinary differential equations. Math. Comput. 21, 303–320 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ong, B.W., Schroder, J.B.: Applications of time parallelization. Comput. Vis. Sci. 23(1–4), 11 (2020)

    Article  MathSciNet  Google Scholar 

  38. Ong, B.W., Spiteri, R.J.: Deferred correction methods for ordinary differential equations. J. Sci. Comput. 83(3), 1–29 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for stiff systems of differential equations. Recent Trends Numer. Anal. 3, 269–289 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  41. Schütz, J., Kaiser, K.: A new stable splitting for singularly perturbed ODEs. Appl. Numer. Math. 107, 18–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schütz, J., Seal, D.: An asymptotic preserving semi-implicit multiderivative solver. Appl. Numer. Math. 160, 84–101 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schütz, J., Seal, D., Jaust, A.: Implicit multiderivative collocation solvers for linear partial differential equations with discontinuous Galerkin spatial discretizations. J. Sci. Comput. 73, 1145–1163 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Seal, D., Güçlü, Y., Christlieb, A.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60, 101–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Southworth, B.S., Krzysik, O., Pazner, W.: Fast parallel solution of fully implicit Runge-Kutta and discontinuous Galerkin in time for numerical PDEs, part II: nonlinearities and DAEs. arXiv preprint arXiv:2101.01776 (2021)

  46. Southworth, B.S., Krzysik, O., Pazner, W., Sterck, H.D.: Fast solution of fully implicit Runge–Kutta and discontinuous Galerkin in time for numerical PDEs, part I: the linear setting. arXiv preprint arXiv:2101.00512 (2021)

  47. Stroud, A.H., Stancu, D.D.: Quadrature formulas with multiple Gaussian nodes. SIAM J. Numer. Anal. 2, 129–143 (1965)

    MathSciNet  MATH  Google Scholar 

  48. Ökten Turacı, M., Öziş, T.: Derivation of three-derivative Runge–Kutta methods. Numer. Algorithms 74(1), 247–265 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zeifang, J., Schütz, J.: Two-derivative deferred correction time discretization for the discontinuous Galerkin method. arXiv preprint arXiv:2109.04804 (2021)

  50. Zeifang, J., Schütz, J., Kaiser, K., Beck, A., Lukáčová-Medvid’ová, M., Noelle, S.: A novel full-Euler low Mach number IMEX splitting. Commun. Comput. Phys. 27, 292–320 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zorío, D., Baeza, A., Mulet, P.: An approximate Lax–Wendroff-type procedure for high order accurate schemes for hyperbolic conservation laws. J. Sci. Comput. 71, 246–273 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This study was initiated during a research stay of D.C. Seal at the University of Hasselt, which was supported by the Special Research Fund (BOF) of Hasselt University. Additional funding came from the Office of Naval Research, Grant numbers N0001419WX01523, N0001420WX00219 and N0001421WX01360. J. Zeifang was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the project GRK 2160/1 ”Droplet Interaction Technologies” and through the project no. 457811052. The HPC-resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Schütz.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Matrices of “One-Step Equivalent”

Matrices of “One-Step Equivalent”

In the following, the matrices required for the formulation of the “one-step equivalent” of Algorithm 1 in Eq. (9) are given. We start by defining the matrices \({\mathfrak {I}},~{\mathfrak {C}}^{(1)},~{\mathfrak {C}}^{(2)}\in \mathbb {R}^{s\times s}\) with

$$\begin{aligned} {\mathfrak {I}}:=\begin{pmatrix} 0 &{} 0 &{} 0 &{} \cdots &{} 0\\ 0 &{} 1 &{} 0 &{} \cdots &{} 0\\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} 0 &{} \cdots &{} 1 \end{pmatrix},~ {\mathfrak {C}}^{(1)}:=\begin{pmatrix} 0&{}0&{}\cdots &{}0\\ c_2&{}0&{}\cdots &{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ c_l&{}0&{}\cdots &{}0 \end{pmatrix},~\text {and}~ {\mathfrak {C}}^{(2)}:=\begin{pmatrix} 0&{}0&{}\cdots &{}0\\ c_2^2&{}0&{}\cdots &{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ c_l^2&{}0&{}\cdots &{}0 \end{pmatrix}. \end{aligned}$$

With this, the matrices \(B_I\) and \(\tilde{B}_I\) for the stiff contribution are given by

$$\begin{aligned} \begin{aligned} B_I&= \begin{pmatrix} {{\,\mathrm{diag}\,}}(c) &{} 0 &{} 0 &{} \cdots &{} \cdots &{} 0\\ B^{(1)}-{\mathfrak {I}} &{} {\mathfrak {I}} &{} 0 &{} \cdots &{} \cdots &{} 0\\ 0 &{} B^{(1)}-{\mathfrak {I}} &{} {\mathfrak {I}} &{} \cdots &{} \cdots &{} 0\\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} \cdots &{} \cdots &{} B^{(1)}-{\mathfrak {I}} &{} {\mathfrak {I}}\\ \end{pmatrix},\\ \tilde{B}_I&= \begin{pmatrix} -{{\,\mathrm{diag}\,}}(c^2) &{} 0 &{} 0 &{} \cdots &{} \cdots &{} 0\\ 2B^{(2)}+{\mathfrak {I}} &{} -{\mathfrak {I}} &{} 0 &{} \cdots &{} \cdots &{} 0\\ 0 &{} 2B^{(2)}+{\mathfrak {I}} &{} -{\mathfrak {I}} &{} \cdots &{} \cdots &{} 0\\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} \cdots &{} \cdots &{} 2B^{(2)}+{\mathfrak {I}} &{} -{\mathfrak {I}}\\ \end{pmatrix}. \end{aligned} \end{aligned}$$

Note that c, \(B^{(1)}\) and \(B^{(2)}\) are defined by the chosen Hermite–Birkhoff quadrature rule, see Eqs. (2)–(4). The matrices \(B_E\) and \(\tilde{B}_E\) of the non-stiff contribution can be found as

$$\begin{aligned} \begin{aligned} B_E = \begin{pmatrix} {\mathfrak {C}}^{(1)} &{} 0 &{} 0 &{} \cdots &{} \cdots &{} 0\\ B^{(1)}&{} 0 &{} 0 &{} \cdots &{} \cdots &{} 0\\ 0 &{} B^{(1)} &{} 0 &{} \cdots &{} \cdots &{} 0\\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} \cdots &{} \cdots &{} B^{(1)} &{} 0\\ \end{pmatrix},\quad \tilde{B}_E = \begin{pmatrix} {\mathfrak {C}}^{(2)} &{} 0 &{} 0 &{} \cdots &{} \cdots &{} 0\\ 2B^{(2)} &{} 0 &{} 0 &{} \cdots &{} \cdots &{} 0\\ 0 &{} 2B^{(2)} &{} 0 &{} \cdots &{} \cdots &{} 0\\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} \cdots &{} \cdots &{} 2B^{(2)} &{} 0\\ \end{pmatrix}. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schütz, J., Seal, D.C. & Zeifang, J. Parallel-in-Time High-Order Multiderivative IMEX Solvers. J Sci Comput 90, 54 (2022). https://doi.org/10.1007/s10915-021-01733-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01733-3

Keywords

Navigation