Skip to main content
Log in

A New Local and Parallel Finite Element Method for the Coupled Stokes–Darcy Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, based on two-grid discretizations and superposition principle, a new local and parallel finite element method is presented and studied for the coupled Stokes–Darcy model. Superposition principle is used to generate a series of local and independent subproblems to obtain a global continuous approximation. Optimal error estimates are derived. Numerical results are reported to support the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximation for Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM. J. Numer. Anal. 47, 4239–4256 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Hou, Y., Qin, Y.: On the Solution of Coupled Stokes/Darcy Model with Beavers–Joseph Interface Condition. Comput. Math. Appl. 77, 50–65 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Li, R., Gao, Y., Yan, W., Chen, Z.: A Crank–Nicolson discontinuous finite volume element method for a coupled non-stationary Stokes–Darcy problem. J. Comput. Appl. Math. 353, 86–112 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Li, Y., Hou, Y.: Error estimates of A second-order decoupled scheme for the evolutionary Stokes–Darcy system. Appl. Numer. Math. 154, 129–148 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Du, G., Zuo, L.: Local and parallel finite element methods for the coupled Stokes/Darcy model. Numer. Algorithms 87, 1593–1611 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Saffman, P.: On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50, 93–101 (1971)

    MATH  Google Scholar 

  8. Xue, D., Hou, Y., Liu, W.: Analysis of the parareal method with spectral deferred correction method for the Stokes/Darcy equations. Appl. Math. Comput. 387, 124625 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Yu, J., Sun, Y., Shi, F., Zheng, H.: Nitsche’s type stabilized finite element method for the fully mixed Stokes–Darcy problem with Beavers-Joseph conditions. Appl. Math. Lett. 110, 106588 (2020)

  10. Cai, M., Mu, M.: A multilevel decoupled method for a mixed Stokes/Darcy model. J. Comput. Appl. Math. 236, 2452–2465 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Du, G., Li, Q., Zhang, Y.: A two-grid method with backtracking for the mixed Navier–Stokes/Darcy model. Numer. Methods Part. Differ. Equ. 36, 1601–1610 (2020)

    MathSciNet  Google Scholar 

  12. Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Du, G., Zuo, L.: A two-grid method with backtracking for the mixed Stokes /Darcy model. J. Numer. Math. 29, 39–46 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Zuo, L., Hou, Y.: A two-grid decoupling method for the mixed Stokes–Darcy model. J. Comput. Appl. Math. 275, 139–147 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Zuo, L., Du, G.: A multi-grid technique for coupling fluid flow with porous media flow. Comput. Math. Appl. 75, 4012–4021 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel robin-robin domain decomposition method for the Stokes–Darcy system. SIAM J. Numer. Anal. 49, 1064–1084 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Discacciati, M., Quarteroni, A., Valli, A.: Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Discacciati, M., Quarteroni, A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6, 93–103 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Feng, W., He, X., Wang, Z., Zhang, X.: Non-iterative domain decomposition methods for a non-stationary Stokes–Darcy model with Beavers–Joseph interface condition. Appl. Math. Comput. 219, 453–463 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Vassilev, D., Wang, C., Yotov, I.: Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 268, 264–283 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Du, G., Hou, Y., Zuo, L.: A modified local and parallel finite element method for the mixed Stokes–Darcy model. J. Math. Analy. Appl. 435, 1129–1145 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Du, G., Zuo, L.: Local and parallel finite element method for the mixed Navier–Stokes/Darcy model with Beavers–Joseph interface conditions. Acta Math. Sci. 37, 1331–1347 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Zuo, L., Du, G.: A parallel two-grid linearized method for the coupled Navier–Stokes–Darcy problem. Numer. Algorithms 77, 151–165 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Wang, X., Du, G., Zuo, L.: A novel local and parallel finite element method for the mixed Navier–Stokes–Darcy problem. Comput. Math. Appl. 90, 73–79 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Li, Y., Hou, Y.: A second-order partitioned method with different subdomain time steps for the evolutionary Stokes–Darcy system. Math. Methods Appl. Sci. 41, 2178–2208 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes–Darcy flow with the Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 51, 813–839 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Hou, Y.: Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes–Darcy model. Appl. Math. Lett. 57, 90–96 (2016)

    MathSciNet  MATH  Google Scholar 

  28. He, Y., Xu, J., Zhou, A., Li, J.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109, 415–434 (2008)

    MathSciNet  MATH  Google Scholar 

  29. He, Y., Xu, J., Zhou, A.: Local and parallel finite element algorithms for the Navier–Stokes problem. J. Comput. Math. 24, 227–238 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Li, Q., Du, G.: Local and parallel finite element methods based on two-grid discretizations for the nonstationary Navier–Stokes equations. Numer. Algorithms (2021). https://doi.org/10.1007/s11075-021-01100-1

    Article  MathSciNet  MATH  Google Scholar 

  31. Shang, Y., He, Y.: Parallel iterative finite element algorithms based on full domain partition for the stationary Navier–Stokes equations. Appl. Numer. Math. 60, 719–737 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Shang, Y., He, Y., Kim, D., Zhou, X.: A new parallel finite element algorithm for the stationary Navier–Stokes equations. Finite Elem. Anal. Des. 47, 1262–1279 (2011)

    MathSciNet  Google Scholar 

  33. Shang, Y., Wang, K.: Local and parallel finite element algorithms based on two-grid discretizations for the transient Stokes equations. Numer. Algorithms 54, 195–218 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Du, G., Zuo, L.: A two-grid parallel partition of unity finite element scheme. Numer. Algorithms. 80, 429–445 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Du, G., Zuo, L.: A parallel partition of unity scheme based on two-grid discretizations for the Navier–Stokes problem. J. Sci. Comput. 75, 1445–1462 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Du, G., Zuo, L.: Local and parallel finite element post-processing scheme for the Stokes problem. Comput. Math. Appl. 73, 129–140 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Du, G., Zuo, L.: A parallel iterative finite element method for the linear elliptic equations. J. Sci. Comput. 85, 35 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Larson, M., Målqvist, A.: Adaptive variational multi-scale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Eng. 196, 2313–2324 (2007)

    MATH  Google Scholar 

  39. Song, L., Hou, Y., Zheng, H.: Adaptive local postprocessing finite element method for the Navier–Stokes equations. J. Sci. Comput. 55, 255–267 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Zheng, H., Yu, J., Shi, F.: Local and parallel finite element method based on the partition of unity for incompressible flow. J. Sci. Comput. 65, 512–532 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Zheng, H., Shi, F., Hou, Y., et al.: New local and parallel finite element algorithm based on the partition of unity. J. Math. Anal. Appl. 435, 1–19 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Zheng, H., Song, L., Hou, Y., et al.: The partition of unity parallel finite element algorithm. Adv. Comput. Math. 41, 937–951 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Yu, J., Shi, F., Zheng, H.: Local and parallel finite element algorithms based on the partition of unity for the Stokes Problem. SIAM, J. Sci. Comput. 36, C547–C567 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Evans, L.: Partial Differential Equations. American Mathematical Society (1997)

  45. Beneš, M., Kučera, P.: Solutions to the Navier–Stokes equations with mixed boundary conditions in two dimensional bounded domains. Math. Nachr. 289, 194–212 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Grisvard, P.: Elliptic problems in nonsmooth domains. Society for Industrial and Applied Mathematics (2011)

  47. Banasiak, J., Roach, G.F.: On mixed boundary value problems of Dirichlet oblique-derivative type in plane domains with piecewise differentiable boundary. J. Differ. Equ. 79, 111–131 (1989)

    MathSciNet  MATH  Google Scholar 

  48. Hecht, F.: New development in FreeFem\(++\). J. Numer. Math. 20, 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is subsidized by NSFC(Grant Nos. 12001234, 11801170, 12172202, 11701343) and Natural Science Foundation of Hunan Province, China (No. 2019JJ50365)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, G., Zuo, L. & Zhang, Y. A New Local and Parallel Finite Element Method for the Coupled Stokes–Darcy Model. J Sci Comput 90, 43 (2022). https://doi.org/10.1007/s10915-021-01723-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01723-5

Keywords

AMS Subject Classifications

Navigation