Skip to main content
Log in

Learning Nonlinear Electrical Impedance Tomography

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Electrical impedance tomography (EIT) is the problem of determining the electrical conductivity distribution of an unknown medium by making voltage and current measurements at the boundary of the object. The image reconstruction inverse problem of EIT is a nonlinear and severely ill-posed problem. The non-linear approach to this challenging problem commonly relies on the iterative regularized Gauss-Newton method, which, however, has several drawbacks: the critical choice of the regularization matrix and parameter and the difficulty in reconstructing solution step changes, as smooth solutions are favored. We address these problems by learning a data-adaptive neural network as the regularization functional and integrating a local anisotropic total variation layer as an attention-like function into an unrolled Gauss-Newton network. We finally show that the proposed learned non-linear EIT approach strengthen the Gauss-Newton approach providing robust and qualitatively superior reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Borsic, A., Graham, B.M., Adler, A., Lionheart, W.R.B.: In vivo impedance imaging with total variation regularization. IEEE Trans. Med. Imaging 29(1), 44–54 (2010)

    Article  Google Scholar 

  2. Calderón, A.P.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and Its Applications to Continuum Physics, 65–73 (1980)

  3. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MathSciNet  Google Scholar 

  4. Chen, X., Wang, Z., Zhang, X., Fu, R., Wang, D., Zhang, M., Wang, H., Member, S.: Deep autoencoder imaging method for electrical impedance tomography. IEEE Trans. Instrum. Meas. 70, 1–15 (2021)

    Google Scholar 

  5. Chen, Z., Yang, Y., Bagnaninchi, P.-O.: Hybrid learning-based cell aggregate imaging with miniature electrical impedance tomography. IEEE Trans. Instrum. Meas. 70, 1–10 (2021)

    Google Scholar 

  6. Cheney, M., Isaacson, D., Newell, J., Simske, S., Goble, J.: Noser: an algorithm for solving the inverse conductivity problem. Int. J. Imag. Syst. Technol. 2, 65–75 (1990)

    Article  Google Scholar 

  7. Cheng, K.-S., Isaacson, D., Newell, J.C., Gisser, D.G.: Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 36(9), 918–924 (1989)

    Article  Google Scholar 

  8. Cortesi, M., Samoré, A., Lovecchio, J., Ramilli, R., Tartagni, M., Giordano, E., Crescentini, M.: Development of an electrical impedance tomography set-up for the quantification of mineralization in biopolymer scaffolds. Physiol. Meas. 42(6), 064001 (2021)

    Article  Google Scholar 

  9. Ding, Q., Chen, G., Zhang, X., Huang, Q., Ji, H., Gao, H.: Low-dose ct with deep learning regularization via proximal forward–backward splitting. Phys. Med. Biol. 65(12), 125009 (2020)

    Article  Google Scholar 

  10. Hamilton, S.J., Hauptmann, A.: Deep d-bar: real-time electrical impedance tomography imaging with deep neural networks. IEEE Trans. Med. Imaging 37(10), 2367–2377 (2018)

    Article  Google Scholar 

  11. Hamilton, S.J., Herrera, C.N., Mueller, J.L., Von Herrmann, A.: A direct D-bar reconstruction algorithm for recovering a complex conductivity in 2D. Inverse Problems 28(9), 095005 (2012)

    Article  MathSciNet  Google Scholar 

  12. Hamilton, S.J., Hänninen, A., Hauptmann, A., Kolehmainen, V.: Beltrami-net: domain-independent deep d-bar learning for absolute imaging with electrical impedance tomography (a-EIT). Physiol. Meas. 40(7), 074002 (2019)

    Article  Google Scholar 

  13. Huska, M., Lazzaro, D., Morigi, S., et al.: A forward-backward strategy for handling non-linearity in electrical impedance tomography. In: Gervasi, O. (ed.) Lecture Notes in Computer Science. Computational Science and Its Applications-ICCSA, vol. 12951, 635–651. Springer, Cham (2021)

  14. Huska, M., Lazzaro, D., Morigi, S., Samoré, A., Scrivanti, G.: Spatially-adaptive variational reconstructions for linear inverse electrical impedance tomography. J. Sci. Comput. 84, 46 (2020)

    Article  MathSciNet  Google Scholar 

  15. Li, Y., Osher, S.: A new median formula with applications to PDE based denoising. Commun. Math. Sci. 7(3), 741–753 (2009)

    Article  MathSciNet  Google Scholar 

  16. Lionheart, W. R.: EIT reconstruction algorithms: Pitfalls, challenges and recent developments. In: Physiological Measurement (2004)

  17. Liu, B., Yang, B., Xu, C., Xia, J., Dai, M., Ji, Z., You, F., Dong, X., Shi, X., Fu, F.: pyeit: a python based framework for electrical impedance tomography. SoftwareX 7, 304–308 (2018)

    Article  Google Scholar 

  18. Martins, P.H., Niculae, V., Marinho, Z., Martins, A.F.T.: Sparse and structured visual attention (2020). ArXiv, abs/2002.05556

  19. Mueller, J.L., Siltanen, S.: Linear and Nonlinear Inverse Problems with Practical Applications. Society for Industrial and Applied Mathematics, Philadelphia (2012)

    Book  Google Scholar 

  20. Muller, P.A., Mueller, J.L., Mellenthin, M., Murthy, R., Capps, M., Wagner, B.D., Alsaker, M., Deterding, R., Sagel, S.D., Hoppe, J.: Evaluation of surrogate measures of pulmonary function derived from electrical impedance tomography data in children with cystic fibrosis. Physiol. Meas. 39(4), 045008 (2018)

    Article  Google Scholar 

  21. Ramirez, J.M., Torre, J.I.M., Arguello, H.: Ladmm-net: an unrolled deep network for spectral image fusion from compressive data. Signal Process. 189, 108239 (2021)

    Article  Google Scholar 

  22. Rymarczyk, T., Kozłowski, E., Kłosowski, G., Niderla, K.: Logistic regression for machine learning in process tomography. Sensors (Switzerland) 19(15), 1–19 (2019)

    Article  Google Scholar 

  23. Santosa, F., Vogelius, M.: A backprojection algorithm for electrical impedance imaging. SIAM J. Appl. Math. 50(1), 216–243 (1990)

    Article  MathSciNet  Google Scholar 

  24. Stefanesco, S., Schlumberger, C., Schlumberger, M.: Sur la distribution électrique potentielle autour d’une prise de terre ponctuelle dans un terrain à couches horizontales, homogènes et isotropes. Journal de Physique et le Radium 1(4), 132–140 (1930)

  25. Tallman, T.N., Smyl, D.J.: Structural health and condition monitoring via electrical impedance tomography in self-sensing materials: a review. Smart Mater. Struct. 29(12), 123001 (2020)

    Article  Google Scholar 

  26. Vauhkonen, M., Vadasz, D., Karjalainen, P.A., Somersalo, E., Kaipio, J.P.: Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans. Med. Imaging 17(2), 285–293 (1998)

    Article  Google Scholar 

  27. Wang, H., Wang, C., Yin, W.: A pre-iteration method for the inverse problem in electrical impedance tomography. IEEE Trans. Instrum. Meas. 53, 1093–1096 (2004)

    Article  Google Scholar 

  28. Wang, Z., Yue, S., Song, K., Liu, X., Wang, H.: An unsupervised method for evaluating electrical impedance tomography images. IEEE Trans. Instrum. Meas. 67(12), 2796–2803 (2018)

    Article  Google Scholar 

  29. Wei, Z., Chen, X.: Induced-current learning method for nonlinear reconstructions in electrical impedance tomography. IEEE Trans. Med. Imaging 39(5), 1326–1334 (2020)

    Article  Google Scholar 

  30. Yang, Q., Sadeghi, A., Wang, G., Giannakis, G. B., Sun, J.: Gauss-Newton unrolled neural networks and data-driven priors for regularized PSSE with robustness (2020). arXiv e-prints arXiv:2003.01667

Download references

Acknowledgements

This research was supported in part by the Italian National Group for Scientific Computation (GNCS-INDAM), Research Projects 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Morigi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colibazzi, F., Lazzaro, D., Morigi, S. et al. Learning Nonlinear Electrical Impedance Tomography. J Sci Comput 90, 58 (2022). https://doi.org/10.1007/s10915-021-01716-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01716-4

Keywords

Navigation